Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615897

RESUMO

Dy3+ doped calcium aluminum borosilicate (CABS) glasses have been synthesized via quick melt quench technique. CABS: xDy3+ glasses (x = 0.1, 0.5, 1, 1.5 and 2 mol%) were subjected to various morphological and photoluminescence studies. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were conducted to study the structural and bonding nature of the undoped glass. The excitation spectra of Dy3+ doped CABS glasses under 574 nm emission show many sharp peaks amongst which the transition from 6H15/2 → 6P7/2 (351 nm) had the highest intensity. Under 351 nm excitation, glasses exhibit sharp peaks in the blue, yellow and red regions corresponding to the transitions 4F9/2 → 6H15/2, 6H13/2, 6H11/2 and 6H9/2 respectively. The dipole-dipole nature of the interaction between the Dy3+ ions is confirmed via Dexter theory and Inokuti-Hirayama (I-H) model. CIE coordinates estimated from the emission profiles of these glasses under 351 nm excitation fall in the white region. Considering that these glasses exhibit sharp visible emission under UV excitation, have stable yellow to blue (Y/B) ratios and fast decays with intense energy transfers, we propose to utilise these glasses for white light generation and other white light LED (w-LED) and solid-state lighting (SSL) applications.

2.
Luminescence ; 38(9): 1607-1617, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37350180

RESUMO

A dysprosium (Dy3+ )-activated potassium calcium silicate (K4 CaSi3 O9 ) phosphor was prepared using a solid-state synthesis route. The phosphor had a cubic structure with the space group Pa 3 ¯ as confirmed using X-ray diffraction (XRD) measurements. Details of surface morphology and elemental composition of the as-synthesized undoped KCS phosphor was obtained using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. The chemical structure as well as the vibrational modes present in the as-prepared KCS phosphor was analyzed using Fourier transform infrared (FT-IR) spectroscopy. Diffuse reflectance spectra (DRS) were used to determine the optical bandgap of the phosphors and were found to be in the optical range 3.52-3.71 eV. Photoluminescence (PL) spectra showed intense yellow emission corresponding to the 4 F9/2 →6 H13/2 transition under 350 nm excitation. Commission International de l'Eclairage colour chromaticity coordinates were evaluated using the PL spectral data lie within the white region. Dexter theory and the Inokuti-Hirayama (I-H) model were applied to study the nature of the energy transfer mechanism in the as-prepared phosphors. The relatively high activation energy of the phosphors was evaluated using temperature-dependent PL (TDPL) data and confirmed the high thermal stability of the titled phosphor. The abovementioned results indicated that the as-prepared KCS:Dy3+ phosphor was a promising candidate for n-UV-based white light-emitting diodes.


Assuntos
Luminescência , Substâncias Luminescentes , Substâncias Luminescentes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Cálcio
3.
Luminescence ; 38(4): 428-436, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786032

RESUMO

Samarium ion (Sm3+ )-doped alkali zinc alumino borosilicate (AZABS) glass was synthesized via quick melt quench technique. Various spectroscopic studies like optical absorption, photoluminescence (PL) emission, PL excitation, temperature-dependent PL and PL decay kinetics were performed on the as prepared glass system. Under 402 nm excitation, three sharp bands at wavelengths 563, 599 and 645 nm corresponding to transitions 4 G5/2 → 6 H5/2 , 6 H7/2 and 6 H9/2 , respectively, can be seen in the PL emission spectra. The 0.25 mol% Sm3+ glass has the highest intensity for these emissions. The lanthanide interaction in the glass matrix is dipole-dipole in nature as was proven from Dexter's analysis. The direct bandgap of 0.25 mol% Sm3+ -doped AZABS glass was calculated to be 2.88 eV. The lifetimes of the as prepared glass range from 1.93 ms for the lowest concentration of Sm3+ to 0.75 ms for the highest. From temperature dependent PL studies, the activation energy for 0.25 mol% Sm3+ -doped AZABS glass was found to be 0.19 eV which shows high thermal stability of this glass. We propose to utilize these Sm3+ -doped AZABS glasses for white-light emitting diodes (w-LEDs) and solid-state lighting (SSL) applications.


Assuntos
Luminescência , Zinco , Vidro/química , Luz , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...