Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 44(9): 4246-58, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25630933

RESUMO

Cucurbit[n]urils (CBn) are a new class of macrocyclic cage compounds capable of binding organic and inorganic species, owing to their unique pumpkin like structure comprising of both a hydrophobic cavity and a hydrophilic portal. The thermodynamics of the complexation of Eu(III) with CBn of a different cavity size viz. cucurbit[5]uril (CB5) and cucurbit[7]uril (CB7) has been studied by UV-Vis spectroscopy and calorimetry at 25 °C whereas the structure of the complexes was investigated using time resolved fluorescence spectroscopy (TRFS) and extended X-ray absorption fine structure spectroscopy (EXAFS) in a formic acid-water mixture (50 wt%). This is the first report on the structural investigation of Eu-CBn complexes in solution. The thermodynamic data (ΔG, ΔH and ΔS) for Eu(III) complexation with CBn reveal the formation of a 1 : 1 complex with CB5, while both 1 : 1 and 1 : 2 complexes are observed with CB7. The signatures of these species are observed in ESI-MS measurements, which corroborates with the species postulated in thermodynamic studies. The complexation reactions are found to be driven by ΔS as ΔH is either small negative or positive indicating the formation of inner sphere complexes, which is in line with TRFS and EXAFS results. These studies show that Eu(III) caps one of the CB5 portals by binding with all the carbonyl groups in the 1 : 1 Eu-CB5 complex, whereas in the 1 : 1 Eu-CB7 complex, Eu(III) interacts with only a few of the carbonyl groups of CB7. The computational studies (DFT calculations) on Eu-CB5 and Eu-CB7 complexes further support the experimental data.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Complexos de Coordenação/química , Európio/química , Imidazóis/química , Conformação Molecular , Análise Espectral/métodos , Termodinâmica
2.
Appl Radiat Isot ; 89: 186-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657474

RESUMO

A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards.


Assuntos
Ligas/química , Alumínio/química , Molibdênio/isolamento & purificação , Radioisótopos/isolamento & purificação , Urânio/química , Análise de Ativação de Nêutrons , Radioquímica/métodos , Espectrometria gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...