Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204161

RESUMO

Air pollution caused by particulate matter and toxic gases is violating individual's health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost. The electrospun membranes, made of different materials and unique structures, exhibit good PM2.5 filtration performance and multi-functions, and are used as masks and filters against PM2.5. This review presents a brief overview of electrospinning techniques, different structures of electrospun nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and summarization of the outdoor and indoor applications in PM filtration.

2.
Sci Total Environ ; 666: 1011-1021, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970468

RESUMO

To mitigate PM2.5 emissions is becoming a pressing concern, because these particles pose a threat to public health. Evidence shows that bead-free nanofiber with diameter of <100 nm is more likely to capture the PM2.5, however, currently it is impossible to fabricate bead-free nanofiber with such diameter without introduction of other substances. To fabricate bead-free polyacrylonitrile (PAN) nanofibers with diameter of <100 nm, we improved the electrospinning process of membrane fabrication via design of experiment (DOE), and we then used these nanofibers to filter PM2.5 emissions from burning cigarettes and fused deposition modeling (FDM) three-dimensional (3D) printing. The DOE was based on a L27 (313) orthodoxy array, which consists of six controllable factors, that is, the concentration of solution, the spinning voltage, the rotating speed, the tip-to-collector distance, the flow rate of the syringe pump, and the electrospinning temperature, each of them has three levels. The results showed that the nanofibers of the least diameter (i.e., 77 nm) can be fabricated under the following condition: 8 wt% PAN solution, 12 kV voltage, 5000 r/min, 12 cm tip-to-collector distance, 0.6 ml/h flow rate, and 50 °C electrospinning temperature. Range analysis and analysis of variance (ANOVA) showed that the concentration of PAN solution has the most significant effect on the diameter, and their values are positively correlated. An examination in a two-chamber filtering device showed the PAN membrane with the least fiber diameter has a PM2.5 filtration efficiency of 99.26%. A filtration test on standard FDM 3D printing process showed the membrane has a PM2.5 removal efficiency of 81.16%. This work could mitigate PM2.5 emissions from cigarette tobacco and FDM 3D printing, and it would be used to other scenarios, such as industrial and traffic emissions.

3.
Sci Rep ; 7(1): 10366, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871170

RESUMO

This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as "building unit" act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...