Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ionics (Kiel) ; : 1-12, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37360247

RESUMO

Mn3O4 nano-octahedrons embedded in N-doped graphene oxide (MNGO) nanosheets were synthesized using a simple, energy-efficient, and rapid microwave-digested hydrothermal route in a single step. The structural and morphological aspects of synthesized materials were evaluated by XRD, IR, Raman, FE-SEM, and HR-TEM techniques. Then, the composite MNGO was tested for its Li-ion storage properties and compared with reduced graphene oxide (rGO) and Mn3O4 materials. The MNGO composite exhibited superior reversible specific capacity, excellent cyclic stability, and outstanding structural integrity throughout the electrochemical studies. The MNGO composite showed a reversible capacity of 898 mA h g-1 after 100 cycles at 100 mA g-1 and Coulombic efficiency of 97.8%. Even at a higher current density of 500 mA g-1, it exhibits a higher specific capacity of 532 mA h g-1 (~1.5 times higher than commercial graphite anode). These results demonstrate that Mn3O4 nano-octahedrons embedded on N-doped GO are a highly durable and potent anode material for LIBs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11581-023-05035-6.

2.
Nanoscale Adv ; 3(18): 5417-5429, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132632

RESUMO

Nitrogen doped activated carbons of high surface area are synthesized using palm flower biomaterial by KOH activation followed by pyrolysis. The concentration of the activating agent KOH and carbonization temperature are found to be crucial to obtain high surface area activated carbon. The optimal concentration of KOH and carbonization temperature for the synthesis of activated carbon, respectively, are 2 M and 800 °C in the flow of nitrogen gas. The optimized conditions have been employed to further prepare nitrogen doped activated carbon (NAC) by varying the weight ratio of palm flowers to melamine. All activated carbons are characterized by powder XRD, BET analysis, RAMAN spectroscopy, HR-SEM analysis, HR-TEM analysis and FT-IR analysis. With 2 wt% nitrogen doping, the BET surface area and pore diameter of the NAC-2 sample are 1054 m2 g-1 and 1.9 nm, respectively. The electrochemical charge storage performance of the nitrogen doped activated carbons has been evaluated in an aqueous acidic electrolyte medium. The results indicate that among the nitrogen doped activated carbons, the NAC-2 sample exhibits the highest electrochemical capacitance of 296 F g-1 at 0.5 A g-1. The performance of the NAC-2 electrode is further tested in aqueous, ionic liquid and solid polymer electrolytes by assembling a symmetric capacitor for real time application. By employing an ionic liquid as the electrolyte, the device delivers an energy density of 8.6 Wh kg-1 and a power density of 38.9 W kg-1 in the voltage window of 1.5 V and at an operating current density of 0.1 A g-1. Interestingly, the NAC-2 electrode shows good cycling performance in the ionic liquid electrolyte (up to 50k cycles). Furthermore, the symmetric device in 0.1 M H2SO4/PVA solid state electrolyte shows excellent electrochemical stability under various bending angles, demonstrating its potential in flexible electronic devices.

3.
Phys Chem Chem Phys ; 20(27): 18474-18483, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29947378

RESUMO

A variety of device applications has been proposed using polyoxometalate-based ionic liquids. However, the assembly of large polyoxometalate ions on surfaces and the associated interfacial properties are not well understood, particularly since the assembly is influenced by steric effects and stronger ion-ion interactions. In this study, graphene transistors gated with a polyoxometalate-based ionic liquid were probed with in situ Raman spectroscopy and charge transport studies. The ionic liquid comprised Cu-substituted lacunary Keggin anions, [PW11O39Cu]5-, which were surrounded by tetraoctyl ammonium cations, (C32H68N)+. The application of gate voltage caused these ions to assemble at the interface with graphene, which resulted in a shift of the Fermi level of the graphene monolayer grown on a copper foil. The shift was determined by the quantum capacitance, Cq, of graphene in series with the electric-double layer capacitance. Estimates of the electric-double layer thickness, spatial density of the ions and temporal rate of the assembly of the electric double-layer were obtained. This study provides insights into the microscopic understanding of the electric double-layer formation at the graphene interface.

4.
Nanoscale ; 5(5): 2089-99, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23381131

RESUMO

In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu(2)(OH)(2)CO(3) possesses monomodal channel-type pores with largely improved surface area (~43 m(2) g(-1)) and pore volume (0.163 cm(3) g(-1)). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 µA mM(-1) cm(-2) and respective detection limit and response time of ~1 µM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the product molecules, which result in the excellent sensitivity and selectivity of sandwich-structured CuO for glucose under non-enzymatic milieu.


Assuntos
Cobre/química , Glucose/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Monossacarídeos/química , Oxirredução , Porosidade
5.
ACS Appl Mater Interfaces ; 3(6): 2063-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21568334

RESUMO

Synthetic methods greatly control the structural and functional characteristics of the materials. In this article, porous NiO samples were prepared in conventional-reflux and microwave assisted heating method under homogeneous precipitation conditions. The NiO samples synthesized in conventional reflux method showed flakelike morphology, whereas the sample synthesized in microwave methods showed hierarchical porous ball like surface morphology with uniform ripple-shaped pores. The NiO samples characterized using BET method were found to bear characteristic meso- and macroporosity due to differently crystallized Ni(OH)(2) precursors under various heating conditions. Thermogravimety analysis showed morphology dependent decomposition of Ni(OH)(2) precursors. The microwave synthesized porous NiO sample with unique morphology and pore size distribution showed significantly improved charge storage and electrochemical stability than the flaky NiO sample synthesized by employing conventional reflux method. The cyclic voltammetry measurements on microwave synthesized NiO sample showed considerably high capacitance and better electrochemical reversibility. The charge-discharge measurements made at a discharge current of 2 A/g showed higher rate specific capacitance (370 F/g) for the NiO sample synthesized by microwave method than the sample synthesized by reflux method (101 F/g). The impedance study illustrates lower electronic and ionic resistance of rippled-shaped porous NiO due to its superior surface properties for enhanced electrode-electrolyte contact during the Faradaic redox reactions. It has been further established from the Ragone plot that the microwave synthesized NiO sample shows higher energy and power densities than the reflux synthesized NiO sample. Broadly, this study reveals that microwave-mediated synthesis approach is significantly a better strategy for the synthesis of porous NiO suitable to electrochemical supercapacitor applications.


Assuntos
Eletroquímica/métodos , Micro-Ondas , Níquel/química
6.
Nanoscale ; 3(2): 683-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21180732

RESUMO

Three nano-porous NiO samples with high specific surface area were prepared by a simple hydrothermal method under homogeneous precipitation conditions using CTAB as a template and urea as the hydrolysis controlling agent. This study was done to determine the effect of different anions (acetate, nitrate and chloride) present in the precursor salts on the morphology and pseudocapacitance behavior of NiO. The samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Brunauer-Emmet-Teller (BET) isotherm and field emission scanning electron microscopy (FESEM). The final NiO samples showed different hierarchical surface morphologies and their effect on the electrochemical pseudocapacitance behavior was carefully studied by cyclic voltammetry, galvanostatic charge-discharge cycles (chronopotentiometry) and impedance spectroscopic techniques. The specific capacitance of NiO sample synthesized by NO3- ion intercalation showed higher surface area, intermediate porosity and a novel pine-cone morphology with nano-wire surface attachments. This sample exhibits the highest pseudocapacitance of 279 F g(-1) at a scan rate of 5 mV s(-1), calculated from the cyclic voltammetry measurements. The sample synthesized by Cl- intercalation shows a nano-flower morphology with lower surface area, porosity and pseudocapacitance behaviour. The NiO sample prepared in the presence of CH3COO- ions showed a honeycomb type surface morphology with an intermediate pseudocapacitance value but higher reversibility. The galvanostatic charge-discharge and impedance spectroscopic measurements on these NiO electrodes were consistent with CV results. The Coulombic efficiency of all the three NiO samples was found to be high (∼85 to ∼99%) after 100 galvanostatic charge-discharge cycles. This study shows that the surface morphology and porosity of NiO are strongly influenced by the anions in the precursor salts, and in turn affect significantly the pseudocapacitance behavior and the power performance of NiO powders.


Assuntos
Ânions/química , Níquel/química , Varredura Diferencial de Calorimetria , Técnicas Eletroquímicas , Eletrodos , Porosidade , Termogravimetria
7.
J Colloid Interface Sci ; 324(1-2): 134-41, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18502441

RESUMO

The interaction of 20 wt% 12-tungstophosphoric acid with Ce(x)Zr(1-x)O(2) solid solutions has been studied by PXRD, FTIR, FT-Raman, H(2)-TPR, NH(3)-TPD, diffuse reflectance UV-vis-NIR, and (31)P MAS NMR techniques. The study indicates that the Keggin anions are attached to Lewis metal ion centres and anion vacancies on Ce(x)Zr(1-x)O(2) supports through WO terminal bonds. The Keggin units at the interface are chemically perturbed as indicated by non-intrinsic IR bands observed at 958 cm(-1) (WO(ter) bond), and 1052, 1102 cm(-1) (PO bond). NH(3)-TPD shows that the Keggin anions fixed to Lewis sites and/or oxygen ion vacancies decrease the ammonia uptake on Ce(x)Zr(1-x)O(2) solid solutions. H(2)-TPR shows modified redox behaviour of Ce(x)Zr(1-x)O(2) solid solutions due to the simultaneous reduction of ceria, decomposition of Keggin anions and the reduction of WO(3). The broadening of (31)P MAS NMR and DR-UV-vis-NIR spectra demonstrate the existence of chemical interactions between the Keggin anions and Ce(x)Zr(1-x)O(2) supports.


Assuntos
Cério/química , Ácidos Fosfóricos/química , Compostos de Tungstênio/química , Zircônio/química , Ânions , Química Inorgânica/métodos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...