Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Rep ; 43(3): 113878, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431844

RESUMO

Cytidine deaminase defines the properties of cytosine base editors (CBEs) for C-to-T conversion. Replacing the cytidine deaminase rat APOBEC1 (rA1) in CBEs with a human APOBEC3A (hA3A) improves CBE properties. However, the potential CBE application of macaque A3A orthologs remains undetermined. Our current study develops and evaluates engineered CBEs based on Macaca fascicularis A3A (mA3A). Here, we demonstrate that BE4-mA3A and its RNA-editing-derived variants exhibit improved CBE properties, except for DNA off-target activity, compared to BE3-rA1 and BE4-rA1. Unexpectedly, deleting Ser-Val-Arg (SVR) in BE4-mA3A dramatically reduces DNA and RNA off-target activities and improves editing accuracy, with on-target efficiency unaffected. In contrast, a chimeric BE4-hA3A-SVR+ shows editing efficiency increased by about 50%, with other properties unaffected. Our findings demonstrate that mA3A-based CBEs could provide prototype options with advantages over rA1- and hA3A-based CBEs for further optimization, highlighting the importance of the SVR motif in defining CBE intrinsic properties.


Assuntos
Citosina , Edição de Genes , Proteínas , Ratos , Animais , Humanos , Macaca fascicularis , Citidina Desaminase/genética , RNA/genética , DNA/genética , Sistemas CRISPR-Cas
2.
Pain ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38422489

RESUMO

ABSTRACT: Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.

3.
Invest Ophthalmol Vis Sci ; 65(1): 13, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175639

RESUMO

Purpose: The purpose of this study was to identify key genes and their regulatory networks that are conserved in mouse models of age-related macular degeneration (AMD) and human AMD. Methods: Retinal RNA-Seq was performed in laser-induced choroidal neovascularization (CNV) mice at day 3 and day 7 after photocoagulation. Mass spectrometry-based proteomic analysis was performed with retinas collected at day 3. Retinal RNA-Seq data was further compared among mouse models of laser-induced CNV and NaIO3-induced retinal degeneration (RD) and a large AMD cohort. Results: Retinal RNA-Seq revealed upregulated genes and pathways related to innate immunity and inflammation in mice with CNV, with more profound changes at the early stage (day 3). Proteomic analysis further validated these differentially expressed genes and their networks in retinal inflammation during CNV. Notably, the most evident overlap in the retina of mice with laser-induced CNV and NaIO3-induced RD was the upregulation of inflammation-related genes, pointing to a common vital role of retinal inflammation in the early stage for both mouse AMD models. Further comparative transcriptomic analysis of the mouse AMD models and human AMD identified 48 conserved genes mainly involved in inflammation response. Among them, B2M, C3, and SERPING1 were upregulated in all stages of human AMD and the mouse AMD models compared to controls. Conclusions: Our study demonstrates conserved molecular changes related to retinal inflammation in mouse AMD models and human AMD and provides new insight into the translational application of these mouse models in studying AMD mechanisms and treatments.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Degeneração Retiniana , Humanos , Animais , Camundongos , Proteômica , Degeneração Macular/genética , Retina , Inflamação , Neovascularização de Coroide/genética , Modelos Animais de Doenças
4.
Biomaterials ; 299: 122161, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236138

RESUMO

We previously constructed a three-dimensional gelatin sponge (3D-GS) scaffold as a delivery vehicle for therapeutic cells and trophic factors in the treatment of spinal cord injury (SCI), and this study aimed to assess the biosafety and efficacy of the scaffold in a non-human primate SCI model. However, because it has only been tested in rodent and canine models, the biosafety and efficacy of the scaffold should ideally be assessed in a non-human primate SCI model before its use in the clinic. No adverse reactions were observed over 8 weeks following 3D-GS scaffold implantation into in a Macaca fascicularis with hemisected SCI. Scaffold implantation also did not add to neuroinflammatory or astroglial responses already present at the injured site, suggesting good biocompatibility. Notably, there was a significant reduction in α-smooth muscle actin (αSMA)-positive cells at the injury/implantation interface, leading to alleviation of fibrotic compression of the residual spinal cord tissue. The regenerating tissue in the scaffold showed numerous cells migrating into the implant secreting abundant extracellular matrix, resulting in a pro-regenerative microenvironment. Consequently, nerve fiber regeneration, myelination, vascularization, neurogenesis, and electrophysiological improvements were achieved. These results indicated that the 3D-GS scaffold had good histocompatibility and effectiveness in the structural repair of injured spinal cord tissue in a non-human primate and is suitable for use in the treatment of patients with SCI.


Assuntos
Gelatina , Traumatismos da Medula Espinal , Animais , Cães , Gelatina/química , Alicerces Teciduais/química , Traumatismos da Medula Espinal/terapia , Regeneração Nervosa/fisiologia , Medula Espinal , Primatas
5.
Front Microbiol ; 13: 876043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401492

RESUMO

Emerging evidence has been reported to support the involvement of the gut microbiota in the host's blood lipid and hyperlipidemia (HLP). However, there remains unexplained variation in the host's blood lipid phenotype. Herein a nonhuman primate HLP model was established in cynomolgus monkeys fed a high-fat diet (HFD) for 19 months. At month 19%, 60% (3/5) of the HFD monkeys developed HLP, but surprisingly 40% of them (2/5) exhibited strong tolerance to the HFD (HFD-T) with their blood lipid profiles returning to normal levels. Metagenomic analysis was used to investigate the compositional changes in the gut microbiota in these monkeys. Furthermore, the relative abundance of Megasphaera remarkably increased and became the dominant gut microbe in HFD-T monkeys. A validation experiment showed that transplantation of fecal microbiota from HFD-T monkeys reduced the blood lipid levels and hepatic steatosis in HLP rats. Furthermore, the relative abundance of Megasphaera significantly increased in rats receiving transplantation, confirming the successful colonization of the microbe in the host and its correlation with the change of the host's blood lipid profiles. Our results thus suggested a potentially pivotal lipid-lowering role of Megasphaera in the gut microbiota, which could contribute to the variation in the host's blood lipid phenotype.

6.
Genomics Proteomics Bioinformatics ; 20(2): 350-365, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34974191

RESUMO

Recent population studies have significantly advanced our understanding of how age shapes the gut microbiota. However, the actual role of age could be inevitably confounded due to the complex and variable environmental factors in human populations. A well-controlled environment is thus necessary to reduce undesirable confounding effects, and recapitulate age-dependent changes in the gut microbiota of healthy primates. Herein we performed 16S rRNA gene sequencing, characterized the age-associated gut microbial profiles from infant to elderly crab-eating macaques reared in captivity, and systemically revealed the lifelong dynamic changes of the primate gut microbiota. While the most significant age-associated taxa were mainly found as commensals such as Faecalibacterium, the abundance of a group of suspicious pathogens such as Helicobacter was exclusively increased in infants, underlining their potential role in host development. Importantly, topology analysis indicated that the network connectivity of gut microbiota was even more age-dependent than taxonomic diversity, and its tremendous decline with age could probably be linked to healthy aging. Moreover, we identified key driver microbes responsible for such age-dependent network changes, which were further linked to altered metabolic functions of lipids, carbohydrates, and amino acids, as well as phenotypes in the microbial community. The current study thus demonstrates the lifelong age-dependent changes and their driver microbes in the primate gut microbiota, and provides new insights into their roles in the development and healthy aging of their hosts.


Assuntos
Microbioma Gastrointestinal , Envelhecimento Saudável , Microbiota , Humanos , Lactente , Animais , Idoso , RNA Ribossômico 16S/genética , Haplorrinos/genética
7.
Exp Neurol ; 340: 113655, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33617887

RESUMO

Unraveling the pathology of stroke is a prerequisite for designing therapeutic strategies. It was reported that myelin injury exceeded axonal loss in the peri-infarct region of rodent white matter stroke. An in-depth investigation of the post-stroke white matter damage in higher-order species might innovate stroke intervention. In this study, adult male cynomolgus monkeys received surgical middle cerebral artery occlusion (MCAO), and serial magnetic resonance scans to non-invasively assess brain damage. Spontaneous movements were recorded to evaluate post-stroke behavior. The axon and myelin loss, as well as immune cell infiltration were examined using immunohistochemistry. Magnetic resonance imaging revealed cerebral infarcts and white matter injury after MCAO in monkeys, which were confirmed by neurological deficits. Immunostaining of white matter fibers showed substantial demyelination whilst retention of axons in the infarcts 8 days post MCAO, while a progressive loss of myelin and axons was observed after one month. Gliosis, microglia activation, and leukocyte infiltration were identified in the lesions. These results demonstrate that demyelination predates axonal injury in non-human primate ischemic stroke, which provides a time window for stroke intervention focusing on prevention of progressive axonal loss through myelin regeneration.


Assuntos
Axônios/patologia , Isquemia Encefálica/patologia , Doenças Desmielinizantes/patologia , AVC Isquêmico/patologia , Substância Branca/patologia , Animais , Axônios/química , Axônios/imunologia , Isquemia Encefálica/imunologia , Doenças Desmielinizantes/imunologia , Gliose/imunologia , Gliose/patologia , AVC Isquêmico/imunologia , Macaca fascicularis , Masculino , Substância Branca/química , Substância Branca/imunologia
8.
Biochem Biophys Res Commun ; 531(2): 172-179, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32788070

RESUMO

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, are the major cause of X-linked retinitis pigmentosa (RP), in which exon open reading frame 15 (ORF15) of RPGR has been implicated to play a substantial role. We identified a novel hemizygous missense mutation E585K of RPGR from whole-exome sequencing of RP. RNA-Seq analysis and functional study were conducted to investigate the underlying pathogenic mechanism of the mutation. Our results showed that the mutation actually affected RPGR ORF15 splicing. RNA-Seq analysis of the human retina followed by validation in cells revealed a complex splicing pattern near the 3' boundary of RPGR exon 14 in the ORF15 region, resulting from a variety of alternative splicing events (ASEs). The wildtype RPGR mini-gene expressed in human 293T cells confirmed these ASEs in vitro. In contrast, without new RNA species detected, the mutant mini-gene disrupted the splicing pattern of the ORF15 region, and caused loss of RPGR transcript heterogeneity. The RNA species derived from the mutant mini-gene were predominated by a minor out-of-frame transcript that was also observed in wildtype RPGR, resulting from an upstream alternative 5' splice site in exon 14. Our findings therefore provide insights into the influence of RPGR exonic mutations on alternative splicing of the ORF15 region, and the underlying molecular mechanism of RP.


Assuntos
Proteínas do Olho/genética , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Retinose Pigmentar/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Proteínas do Olho/química , Hemizigoto , Humanos , Masculino , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Hepatol ; 72(5): 896-908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31887370

RESUMO

BACKGROUND & AIMS: The presence of multifocal tumors, developed either from intrahepatic metastasis (IM) or multicentric occurrence (MO), is a distinct feature of hepatocellular carcinoma (HCC). Immunogenomic characterization of multifocal HCC is important for understanding immune escape in different lesions and developing immunotherapy. METHODS: We combined whole-exome/transcriptome sequencing, multiplex immunostaining, immunopeptidomes, T cell receptor (TCR) sequencing and bioinformatic analyses of 47 tumors from 15 patients with HCC and multifocal lesions. RESULTS: IM and MO demonstrated distinct clonal architecture, mutational spectrum and genetic susceptibility. The immune microenvironment also displayed spatiotemporal heterogeneity, such as less T cell and more M2 macrophage infiltration in IM and higher expression of inhibitory immune checkpoints in MO. Similar to mutational profiles, shared neoantigens and TCR repertoires among tumors from the same patients were abundant in IM but scarce in MO. Combining neoantigen prediction and immunopeptidomes identified T cell-specific neoepitopes and achieved a high verification rate in vitro. Immunoediting mainly occurred in MO but not IM, due to the relatively low immune infiltration. Loss of heterozygosity of human leukocyte antigen (HLA) alleles, identified in 17% of multifocal HCC, hampered the ability of major histocompatibility complex to present neoantigens, especially in IM. An integrated analysis of Immunoscore, immunoediting, TCR clonality and HLA loss of heterozygosity in each tumor could stratify patients into 2 groups based on whether they have a high or low risk of recurrence (p = 0.038). CONCLUSION: Our study comprehensively characterized the genetic structure, neoepitope landscape, T cell profile and immunoediting status that collectively shape tumor evolution and could be used to optimize personalized immunotherapies for multifocal HCC. LAY SUMMARY: Immunogenomic features of multifocal hepatocellular carcinoma (HCC) are important for understanding immune-escape mechanisms and developing more effective immunotherapy. Herein, comprehensive immunogenomic characterization showed that diverse genomic structures within multifocal HCC would leave footprints on the immune landscape. Only a few tumors were under the control of immunosurveillance, while others evaded the immune system through multiple mechanisms that led to poor prognosis. Our study revealed heterogeneous immunogenomic landscapes and immune-constrained tumor evolution, the understanding of which could be used to optimize personalized immunotherapies for multifocal HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/imunologia , Evasão Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/imunologia , Feminino , Predisposição Genética para Doença , Antígenos HLA/genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T/genética , Transcriptoma , Sequenciamento do Exoma
10.
Animal Model Exp Med ; 2(1): 44-50, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31016286

RESUMO

BACKGROUND: Cynomolgus disease models that are similar to the preclinical stage of human type 2 diabetes mellitus (T2DM) were established by feeding middle-aged cynomolgus monkeys different high energy diets to study the differential expression of diabetes-related genes. METHODS: A total of 36 male monkeys were randomly divided into four groups and fed human diets with high sugar, high fat, double high sugar and fat, and a normal diet. The preclinical diabetes phase was determined by monitoring the metabolic characteristic indices and the results of oral glucose tolerance tests (OGTT). The mRNA expression of 45 diabetes-related genes in peripheral blood leukocytes was analyzed using real-time PCR. RESULTS: A total of 22, 25, and 21 genes were significantly up-regulated (P < 0.05) and 5, 7, and 5 genes were significantly down-regulated (P < 0.05) in the above three induced groups, respectively, compared with the control group. Of the 45 tested genes, the expression profiles of 21 genes were consistent. Most of the expression levels in the double high sugar-and-fat individuals were slightly lower than those in the high glucose and high fat groups, although the expression patterns of the three groups were essentially similar. CONCLUSION: The different high energy diets all induced diabetes and shared some phenotypic properties with human T2DM. Most of the expression patterns of the related genes were identical. The gene expression profiles could be used as references for the study of early diagnostic indicators and T2DM pathogenesis.

11.
Lipids Health Dis ; 18(1): 1, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611256

RESUMO

BACKGROUND: Excess energy intake contributes to metabolic disorders. However, the relationship between excess sugar and fat in their contributions to metabolic abnormalities remains to be further elucidated. Here we conducted a prospective feeding experiment to evaluate effects of dietary fat-to-sugar ratio on diet-induced metabolic abnormalities in adult cynomolgus monkeys. METHODS: Four groups of adult cynomolgus monkeys were fed regular chow plus emulsion with combinations of high sugar (HS) or low sugar (HS) and low fat (LF) or high fat (HF) for 7 months. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and blood glucose were measured for all the four groups of animals during the experiment. RESULTS: Plasma levels of TC and LDL-C gradually increased in all 4 diets groups, with the highest increase found in the LSHF group compared to the other three groups (P = 0.0018 and P = 0.0005 respectively). HF induced increased fasting glucose (P = 0.0077) and HS induced higher TG (P = 0.0227) respectively. Intriguingly, HSHF led to dramatically smaller magnitude of increase in LDL-C and TC levels compared to LSHF, while such difference was absent between the LSLF and LSHF groups. Our findings thus indicate interactive effects of HS and HF on TC and LDL-C. In addition, HF exhibited stronger effects on lipid abnormalities than HS. CONCLUSIONS: In the current study, our prospective feeding experiment in adult cynomolgus monkeys revealed effects of different fat-to-sugar ratios on diet-induced metabolic abnormalities. Furthermore, our findings suggest that not only excess dietary energy but also the balance of dietary fat-to-sugar ratio matters in diet-induced lipid abnormalities.


Assuntos
Carboidratos da Dieta , Gorduras na Dieta , Açúcares , Animais , Feminino , Masculino , Administração Oral , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Macaca fascicularis , Estudos Prospectivos , Açúcares/administração & dosagem , Triglicerídeos/sangue
12.
Dongwuxue Yanjiu ; 33(1): 79-84, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22345013

RESUMO

To explore pathological alteration of T2DM in cynomolgus monkeys, gene expression profiles of peripheral blood leukocytes from spontaneous and diet-induced T2DM models was analyzed using quantitative real-time PCR. Among 36 T2DM associated genes tested, 19 genes (including G6PC, CCR2B, CTLA4) displayed a similar expression pattern in both spontaneous and diet-induced T2DM models and were significantly up-regulated or down-regulated compared to controls. Interestingly, expression abundance of all up-regulated genes in the diet-induced T2DM was stronger, although not significantly, than spontaneous models, indicating diet-induced T2DM in monkeys should be a reliable research model for changes in gene expression. The characteristic gene expression pattern obtained here may be useful for the clinical diagnosis of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Macaca fascicularis , Animais , Diabetes Mellitus Tipo 2/etiologia , Gorduras na Dieta/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo
13.
Dongwuxue Yanjiu ; 32(3): 293-9, 2011 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-21698795

RESUMO

The correlation between cardiovascular risk factors and cardiovascular disease related genes plays an important role in early-warning risk and early diagnosis. Thirty middle-aged male crab-eating macaques were fed a moderately atherogenic diet (0.053 mg cholesterol/kJ and 40% of calories as saturated fat) for twelve months. According to cardiovascular risk factors, we selected low-risk and high-risk crab-eating macaques, then analyzed the expression of 113 cardiovascular related genes by real-time PCR. A total of 65 genes were detected in peripheral blood leukocytes by real-time PCR. Sixteen up-regulated genes and nineteen down-regulated genes were detected in low-risk and high-risk crab-eating macaques compared to normal crab-eating macaques (P<0.05), in addition to fifteen genes that showed unique expression patterns (P<0.05). We also detected 42 genes in human peripheral blood leukocytes. The expression patterns of 22 genes were consistent between human and crab-eating macaques. These results narrowed the scope of genes for further research.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Modelos Animais de Doenças , Macaca fascicularis , Animais , Doenças Cardiovasculares/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Dieta/efeitos adversos , Dieta Aterogênica , Regulação da Expressão Gênica , Humanos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Masculino , Fatores de Risco
14.
Dongwuxue Yanjiu ; 32(3): 307-10, 2011 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-21698797

RESUMO

To screen spontaneous diabetic mellitus and explore methods for its rapid identification, the basal and inferred levels of blood glucose of 440 overweight, middle- and old-aged cynomolgus monkeys were analyzed. Diagnostic diabetes was further validated by the oral glucose tolerance test (OGTT) and urine glucose. The average level of blood glucose of these cynomolgus monkeys was (3.88±0.98) mmol/L, which was lower than the level for suspected diabetes (5.0 mmol/L). Of them, 56 (12.72%) monkeys were identified with levels of blood glucose greater than 5.0 mmol/L and diagnosed as the diabetic subjects. This population showed impaired glucose tolerance using the OGTT and 39 of the 56 (69.23%) had glucose positive urine. The methods for screening diabetic mellitus used in this study were simple, quick, and limited the harm to animals. However, the incidence of diabetes was higher in these tested monkeys than in the regular human population in China (9.7%), suggesting that these methods are useful for screening diabetic disease in a large population but not suitable for all cynomolgus monkeys.


Assuntos
Diabetes Mellitus/metabolismo , Macaca fascicularis/metabolismo , Fatores Etários , Animais , Glicemia/análise , Feminino , Teste de Tolerância a Glucose , Masculino
15.
Cell Mol Neurobiol ; 31(3): 365-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21120599

RESUMO

Tracking of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles-labeled embryonic stem cells, neural stem cells, or adult mesenchymal stem cells in vitro and in vivo by using magnetic resonance (MR) imaging have been reported. However, whether the transdifferentiated cells can be effectively labeled by USPIO has not yet been investigated. The requirement for nerve donor material evokes additional morbidity and inability to generate a sufficiently large number of cells in a short time to hamper the clinic application of Schwann cells (SCs) transplantation. These limitations may be avoided if SCs can be generated from clinically accessible sources, such as bone marrow and umbilical cord. However, a reliable means of inducing the selective differentiation of human mesenchymal stromal cells isolated from the umbilical cord (HUMSCs) into SCs in vitro has not yet been established. In this study, we induce HUMSCs into Schwann-like cells in terms of morphology, phenotype, and function by an improved protocol basing on our previous studies. Furthermore, HUMSCs-derived SCs are labeled efficiently in vitro with ultrasmall superparamagnetic iron oxide contrast agent (USPIO) Sinerem and poly-L-lysine (PLL) without affecting morphology, cell cycle, proliferation, and differentiation ability of the labeled cells between the concentration of 200 to 800 µg/ml. Importantly, when grafted into the intact cerebral cortex and striatum, the survival and migration of these Sinerem-labeled cells were observed using MRI. Our study suggest the effective concentration field for Sinerem use in tracking transdifferentiated HUMSCs, and Sinerem labeling transdifferentiated HUMSCs is feasible, efficient, and safe for MRI tracing following grafting into nervous system.


Assuntos
Dextranos/metabolismo , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/fisiologia , Células de Schwann/fisiologia , Células Estromais/fisiologia , Cordão Umbilical/citologia , Animais , Apoptose , Diferenciação Celular/fisiologia , Transdiferenciação Celular/fisiologia , Células Cultivadas , Meios de Contraste , Humanos , Nanopartículas de Magnetita , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...