Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007848

RESUMO

Fused filament fabrication (FFF), a portable, clean, low cost and flexible 3D printing technique, finds enormous applications in different sectors. The process has the ability to create ready to use tailor-made products within a few hours, and acrylonitrile butadiene styrene (ABS) is extensively employed in FFF due to high impact resistance and toughness. However, this technology has certain inherent process limitations, such as poor mechanical strength and surface finish, which can be improved by optimizing the process parameters. As the results of optimization studies primarily depend upon the efficiency of the mathematical tools, in this work, an attempt is made to investigate a novel optimization tool. This paper illustrates an optimization study of process parameters of FFF using neural network algorithm (NNA) based optimization to determine the tensile strength, flexural strength and impact strength of ABS parts. The study also compares the efficacy of NNA over conventional optimization tools. The advanced optimization successfully optimizes the process parameters of FFF and predicts maximum mechanical properties at the suggested parameter settings.

2.
Mikrochim Acta ; 186(2): 62, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30627873

RESUMO

The authors decribe an ultra-sensitive, room temperature, flexible transparent LPG sensor based on the use of a CdO/graphene nanocomposite. The graphene prevents the accumulation of CdO, enhances the surface area, and acts as a gas sensing material. FESEM images show a uniform decoration of CdO nanoparticles on graphene. The CdO/graphene composite was deposited as a film on interdigitated electrodes (IDEs) which then were used for chemiresistive sensing of liquid petroleum gas (LPG) by using a four probe technique. A Resistivity decreases significantly upon exposure to a LPG. The electrical resistance measurement at a constant bias voltage of 0.5 V. The sensor of type CdO/graphene (1 wt.%) exhibits a sensitivity of 600 ppm of LPG at 27 °C. It is a highly selective, stable and sensitive to low concentration of LPG even at room temperature. Graphical abstract The gas sensing properties of CdO/graphene nanocomposite with different weight percentages were studied using chemiresistive technique.

3.
RSC Adv ; 8(6): 3243-3249, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35541183

RESUMO

Low concentration gas detection, rapid response time and low working temperature are anticipated for a varied range of toxic gas detection applications. Conversely, the existing gas sensors suffer mostly from a high working temperature along with a slow response at low concentrations of analytes. Here, we report an ultrasensitive flexible nanostructured Zn(x)Fe(1-x)2O4 (x = 0.1, 0.5 and 0.9) based chemiresistive sensor for nitrogen dioxide (NO2) detection. We evince that the prepared flexible sensor Zn(0.5)Fe(0.5)2O4 has detection potential as low as 5 ppm at a working temperature of 90 °C in a short phase. Further, the Zn(0.5)Fe(0.5)2O4 sensor exhibits excellent selectivity, stability and repeatability. The optimized sensor sensing characteristics can be helpful in tremendous development of foldable mobile devices for environmental monitoring, protection and control.

4.
Mikrochim Acta ; 185(1): 69, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29594642

RESUMO

A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO2) was prepared by ultrasound-assisted synthesis. The uniform SnO2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors. Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...