Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histopathology ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890779

RESUMO

AIMS: Chondromyxoid fibroma (CMF) is a rare, benign bone tumour which arises primarily in young adults and is occasionally diagnostically challenging. Glutamate metabotropic receptor 1 (GRM1) gene encodes a metabotropic glutamate receptor and was recently shown to be up-regulated in chondromyxoid fibroma through gene fusion and promoter swapping. The aim of this study was to interrogate cases of CMF for the presence of GRM1 gene rearrangements, gene fusions and GRM1 protein overexpression. METHODS AND RESULTS: Selected cases were subjected to testing by fluorescent in-situ hybridisation (FISH) with a GRM1 break-apart probe, a targeted RNA sequencing method and immunohistochemical study with an antibody to GRM1 protein. Two cases were subjected to whole transcriptomic sequencing. In 13 of 13 cases, GRM1 protein overexpression was detected by immunohistochemistry using the GRM1 antibody. Of the 12 cases successfully tested by FISH, nine of 12 showed GRM1 rearrangements by break-apart probe assay. Targeted RNA sequencing analysis did not detect gene fusions in any of the eight cases tested, but there was an increase in GRM1 mRNA expression in all eight cases. Two cases subjected to whole transcriptomic sequencing (WTS) showed elevated GRM1 expression and no gene fusions. CONCLUSION: GRM1 gene rearrangements can be detected using FISH break-apart probes in approximately 75% of cases, and immunohistochemical detection of GRM1 protein over-expression is a sensitive diagnostic method. The gene fusion was not detected by targeted RNA sequencing, due most probably to the complexity of fusion mechanism, and is not yet a reliable method for confirming a diagnosis of CMF in the clinical setting.

2.
Appl Microsc ; 51(1): 4, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835321

RESUMO

Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

3.
Genes Chromosomes Cancer ; 60(1): 43-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920865

RESUMO

Evolution of poorly differentiated chordoma from conventional chordoma has not been previously reported. We encountered a case of a poorly differentiated chordoma with evidence of whole-genome doubling arising from a SMARCB1-deficient conventional chordoma. The tumor presented as a destructive sacral mass in a 43-year-old man and was comprised of a highly cellular poorly differentiated chordoma with small, morphologically distinct nodules of conventional chordoma accounting for <5% of the total tumor volume. Immunohistochemistry (IHC) revealed both components were strongly reactive for brachyury and lacked normal staining for INI1. Single nucleotide polymorphism (SNP) array analysis identified multiple genomic imbalances in the conventional component, including deletions of 1p, 3p, and 22q (involving SMARCB1) and loss of chromosomes 5 and 15, while the poorly differentiated component exhibited the same aberrations at a more profound level with additional loss of chromosome 4, low level focal deletion of 17p (involving TP53), and tetraploidy. Homozygous deletion of SMARCB1 was present in both components. Fluorescence in situ hybridization (FISH) analysis confirmed the relevant deletions in both components as well as genome doubling in the poorly differentiated tumor. This case suggests that SMARCB1 loss is an early event in rare conventional chordomas that could potentially evolve into poorly differentiated chordoma through additional genomic aberrations such as genome doubling. Further studies with additional patients will be needed to determine if genome doubling is a consistent pathway for evolution of poorly differentiated chordoma.


Assuntos
Cordoma/genética , Deleção Cromossômica , Proteína SMARCB1/genética , Neoplasias da Coluna Vertebral/genética , Tetraploidia , Adulto , Cordoma/patologia , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Humanos , Masculino , Proteína SMARCB1/deficiência , Sacro/patologia , Neoplasias da Coluna Vertebral/patologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
4.
Am J Surg Pathol ; 45(1): 77-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889887

RESUMO

Although diagnosis of high-grade uterine mesenchymal tumors (UMTs) exhibiting classic morphologic features is straightforward, diagnosis is more challenging in tumors in which prototypical features are poorly developed, focal, and/or coexist with features seen in other neoplasms. Here, we sought to define the repertoire of somatic genetic alterations in diagnostically challenging UMTs with myomelanocytic differentiation, including some reported as perivascular epithelioid cell tumors (PEComas). In 17 samples from 15 women, the tumors were histologically heterogenous. Immunohistochemical expression of at least 1 melanocytic marker (HMB45, Melan-A, or MiTF) was identified in all tumors, and of myogenic markers (desmin or smooth muscle actin) in most tumors. Targeted massively parallel sequencing revealed several genetic alterations, most commonly in TP53 (41% mutation, 12% deletion), TSC2 (29% mutation, 6% deletion), RB1 (18% deletion), ATRX (24% mutation), MED12 (12% mutation), BRCA2 (12% deletion), CDKN2A (6% deletion) as well as FGFR3, NTRK1, and ERBB3 amplification (each 6%). Gene rearrangements (JAZF1-SUZ12; DNAJB6-PLAG1; and SFPQ-TFE3) were identified in 3 tumors. Integrating histopathologic, immunohistochemical, and genetic findings, tumors from 4 patients were consistent with malignant PEComa (1 TFE3-rearranged); 6 were classified as leiomyosarcomas; 3 showed overlapping features of PEComa and other sarcoma types (leiomyosarcoma or low-grade endometrial stromal sarcoma); and 2 were classified as sarcoma, not otherwise specified. Our findings suggest that diagnostically challenging UMTs with myomelanocytic differentiation represent a heterogenous group of neoplasms which harbor a diverse repertoire of somatic genetic alterations; these genetic alterations can aid classification.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias de Células Epitelioides Perivasculares/diagnóstico , Sarcoma/diagnóstico , Neoplasias Uterinas/diagnóstico , Adulto , Idoso , Biomarcadores Tumorais/análise , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias de Células Epitelioides Perivasculares/classificação , Neoplasias de Células Epitelioides Perivasculares/genética , Sarcoma/classificação , Sarcoma/genética , Neoplasias Uterinas/classificação , Neoplasias Uterinas/genética
5.
Am J Surg Pathol ; 44(6): 838-848, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118627

RESUMO

In patients with multiple myeloma, plasmablastic transformation in the bone marrow is rare and associated with poor outcomes. The significance of discordant extramedullary plasmablastic transformation in patients with small, mature clonal plasma cells in the bone marrow has not been well studied. Here, we report the clinicopathologic, cytogenetic, and molecular features of 10 such patients (male/female: 6/4, median age: 65 y, range: 48 to 76 y) with an established diagnosis of multiple myeloma in the bone marrow composed of small, mature plasma cells in parallel with a concurrent or subsequent extramedullary plasmablastic transformation. Eight patients with available survival data showed an overall aggressive clinical course with a median survival of 4.5 months after the diagnosis of extramedullary plasmablastic transformation, despite aggressive treatment and even in patients with low-level bone marrow involvement. Pathologically, the extramedullary plasmablastic myeloma were clonally related to the corresponding bone marrow plasma cells, showed high levels of CMYC and/or P53 expression with a high Ki-67 proliferation index by immunohistochemistry and harbored more complex genomic aberrations including frequent mutations in the RAS pathway and MYC rearrangements compared with their bone marrow counterparts. In summary, although genetic and immunohistochemical studies were not uniformly performed on all cases due to the retrospective nature of this study, our data suggest that discordant extramedullary plasmablastic transformation of multiple myeloma has an aggressive clinical course and is characterized by frequent mutations in the RAS pathway and more complex genomic abnormalities.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Mod Pathol ; 31(1): 132-140, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28884748

RESUMO

Approximately 1-2% of pancreatic neoplasms are acinar cell carcinomas. Recently, BRAF gene rearrangements were identified in over 20% of acinar-type neoplasms, which included both pure acinar cell carcinomas and mixed carcinomas with acinar differentiation, using next-generation sequencing-based platforms, providing a potential therapeutic target for patients with these neoplasms. Thus, it is clinically important to develop a rapid, cost- and material-efficient assay to screen for BRAF gene fusions in pancreatic acinar-type neoplasms. We developed a dual color, break-apart FISH assay to detect BRAF gene rearrangements in these neoplasms and evaluated its performance in comparison to next-generation sequencing-based studies. A blinded BRAF rearrangement FISH investigation was performed on 31 acinar-type neoplasms that had been studied previously by next-generation sequencing-based analysis as well as on 18 additional acinar-type neoplasms that were accrued over the past 2 years. In total, BRAF fusions were identified in 12/49 (24%) acinar-type neoplasms by FISH. BRAF fusion partners were uncovered by using targeted next-generation sequencing studies in 11 FISH-positive cases that had sufficient material for next-generation sequencing studies. SND1 was the most frequent fusion partner involved in BRAF-fusion acinar-type neoplasms (50%), followed by HERPUD1 (18%). No BRAF fusions were identified by next-generation sequencing in any of the FISH-negative cases investigated. FISH analysis showed that BRAF rearrangements were diffusely present across tumor-rich areas in BRAF-fusion acinar-type neoplasms, which is consistent with an oncogenic driver alteration pattern. Thus, we demonstrated that, in comparison to targeted next-generation sequencing-based technologies, the FISH assay is highly sensitive and specific as well as time- and cost-efficient in the detection of BRAF fusions in acinar-type neoplasms. The FISH assay can be easily implemented in diagnostic settings to identify acinar-type neoplasms patients potentially suitable for targeted therapy to inhibit MAPK pathway activity.


Assuntos
Carcinoma de Células Acinares/genética , Hibridização in Situ Fluorescente/métodos , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Perfilação da Expressão Gênica/métodos , Rearranjo Gênico , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Mol Diagn ; 19(3): 387-396, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28433076

RESUMO

Spitzoid neoplasms are a distinct group of melanocytic tumors. Genetically, they lack mutations in common melanoma-associated oncogenes. Recent studies have shown that spitzoid tumors may contain a variety of kinase fusions, including ROS1, NTRK1, ALK, BRAF, and RET fusions. We report herein the discovery of recurrent NTRK3 gene rearrangements in childhood melanocytic neoplasms with spitzoid and/or atypical features, based on genome-wide copy number analysis by single-nucleotide polymorphism array, which showed intragenic copy number changes in NTRK3. Break-apart fluorescence in situ hybridization confirmed the presence of NTRK3 rearrangement, and a novel MYO5A-NTRK3 transcript, representing an in-frame fusion of MYO5A exon 32 to NTRK3 exon 12, was identified using a rapid amplification of cDNA ends-based anchored multiplex PCR assay followed by next-generation sequencing. The predicted MYO5A-NTRK3 fusion protein consists of several N-terminal coiled-coil protein dimerization motifs encoded by MYO5A and C-terminal tyrosine kinase domain encoded by NTRK3, which is consistent with the prototypical structure of TRK oncogenic fusions. Our study also demonstrates how array-based copy number analysis can be useful in discovering gene fusions associated with unbalanced genomic aberrations flanking the fusion points. Our findings add another potentially targetable kinase fusion to the list of oncogenic fusions in melanocytic tumors.


Assuntos
Fusão Gênica/genética , Melanoma/genética , Receptor trkC/genética , Quinase do Linfoma Anaplásico , Receptor com Domínio Discoidina 2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-ret/genética , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de DNA
8.
J Mol Diagn ; 15(5): 581-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23800576

RESUMO

Benign melanocytic nevi and cutaneous melanomas can be difficult to differentiate by means of routine microscopic analysis. Recent evidence has suggested that cytogenomic analysis may be a useful diagnostic method for evaluation of melanocytic proliferations. We investigated the array-based comparative genomic hybridization (aCGH) platform for DNA copy number analysis of formalin-fixed, paraffin-embedded (FFPE) tissues in melanocytic tumors and compared aCGH analysis with fluorescence in situ hybridization (FISH) assays in diagnosis of melanoma. aCGH findings and FISH results were interpreted independently in a blinded fashion. Positive findings were not noted in any benign nevi at aCGH analysis, whereas substantial unbalanced genomic aberrations were revealed in 92% of melanomas. Positive results were obtained in 72% of melanomas via the four-probe FISH assay (RREB1/MYB/CEP6/CCND1). A few additional FISH studies were performed to verify some aCGH findings of focal amplification of oncogenes and homozygous deletion of tumor suppressor genes. The overall concordance in aberrations detected using the two methods was 90%. Most discrepancies were due to a minor abnormal clone identified via FISH that was below analytical sensitivity of the FFPE aCGH test. Our study demonstrated that copy number analysis of FFPE tumor samples via aCGH is a robust and reliable method in diagnosis of melanoma and that aCGH and FISH tests should be used as complementary methods to improve the accuracy of genetic evaluation of melanocytic tumors.


Assuntos
Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Melanoma/diagnóstico , Algoritmos , Hibridização Genômica Comparativa/métodos , Hibridização Genômica Comparativa/normas , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Humanos , Hibridização in Situ Fluorescente/métodos , Hibridização in Situ Fluorescente/normas , Melanoma/genética , Melanoma/patologia , Sensibilidade e Especificidade , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
9.
Genes Chromosomes Cancer ; 48(9): 786-94, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19530243

RESUMO

The oncogene v-akt was isolated from a retrovirus that induced naturally occurring thymic lymphomas in AKR mice. We hypothesized that constitutive activation of Akt2 could serve as a first hit for the clonal expansion of malignant T-cells by promoting cell survival and genomic instability, leading to chromosome alterations. Furthermore, genes that cooperate with Akt2 to promote malignant transformation may reside at translocation/inversion junctions found in spontaneous thymic lymphomas from transgenic mice expressing constitutively active Akt2 specifically in T cells. Cytogenetic analysis revealed that thymic tumors from multiple founder lines exhibited either of two recurrent chromosomal rearrangements, inv(6)(A2B1) or t(14;15)(C2;D1). Fluorescence in situ hybridization, array CGH, and PCR analysis were used to delineate the inv(6) and t(14;15) breakpoints. Both rearrangements involved T-cell receptor loci. The inv(6) results in robust upregulation of the homeobox/transcription factor gene Dlx5 because of its relocation near the Tcrb enhancer. The t(14;15) places the Tcra enhancer in the vicinity of the Myc proto-oncogene, resulting in upregulated Myc expression. These findings suggest that activation of the Akt pathway can act as the initial hit to promote cell survival and genomic instability, whereas the acquisition of T-cell-specific overexpression of Dlx5 or Myc leads to lymphomagenesis.


Assuntos
Rearranjo Gênico , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Linfoma de Células T/genética , Oncogenes , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Sequência de Bases , Aberrações Cromossômicas , Quebra Cromossômica , Hibridização Genômica Comparativa , Humanos , Hibridização in Situ Fluorescente , Linfoma de Células T/enzimologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência , Células Tumorais Cultivadas
10.
Cancer Res ; 68(5): 1296-302, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316591

RESUMO

The oncogene v-akt was isolated from a retrovirus that induced murine thymic lymphomas. Transgenic mice expressing a constitutively activated form of the cellular homologue Akt2 specifically in immature T cells develop spontaneous thymic lymphomas. We hypothesized that tumors from these mice might exhibit oncogenic chromosomal rearrangements that cooperate with activated Akt2 in lymphomagenesis. Cytogenetic analysis revealed a recurrent clonal inversion of chromosome 6, inv(6), in thymic lymphomas from multiple transgenic founder lines, including one line in which 15 of 15 primary tumors exhibited this same rearrangement. Combined fluorescence in situ hybridization, PCR, and DNA sequence analyses showed that the distal inv(6) breakpoint resides at the T-cell receptor beta chain locus, Tcrb. The proximal breakpoint maps to a region near a locus comprising the linked homeobox/transcription factor genes Dlx5 and Dlx6. Expression analysis of genes translocated to the vicinity of the Tcrb enhancer revealed that Dlx5 and Dlx6 are overexpressed in tumors exhibiting the inv(6). Experimental overexpression of Dlx5 in mammalian cells resulted in enhanced cell proliferation and increased colony formation, and clonogenic assays revealed cooperativity when both Dlx5 and activated Akt2 were coexpressed. In addition, DLX5, but not DLX6, was found to be abundantly expressed in three of seven human T-cell lymphomas tested. These findings suggest that the Dlx5 can act as an oncogene by cooperating with Akt2 to promote lymphomagenesis.


Assuntos
Inversão Cromossômica , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Linfoma de Células T/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição/genética , Animais , Proliferação de Células , Humanos , Linfoma de Células T/patologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...