Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 6: e5934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498632

RESUMO

The reproductive biology of the Myristica Swamp tree frog (Mercurana myristicapalustris), a monotypic rhacophorid frog endemic to the foothills of the Western Ghats mountains of India, has remained unknown since the description of the genus and species. We monitored individuals from parental generation amplexus to the completion of offspring generation tadpole metamorphosis. Surprisingly, our observations revealed that this species exhibits many previously unknown characteristics, including the first ever record of the female, and a diverse call repertoire, consisting of five different call types (the functions of which remain incompletely known). We were also able to determine that reproductive activity peaked during the late pre-monsoon season, that males engaged in intraspecific aggressive encounters to occupy and to defend desirable territories, and that oviposition took place in terrestrial nests made by females. Embryonic development in the unattended nest was followed by tadpole development, which concluded within 40 days. The specific breeding mode employed by Mercurana, which restricts its range to the endangered Myristica swamp ecosystem, likely renders it susceptible to multiple threats, which should be considered jointly in future conservation planning.

2.
Nat Commun ; 9(1): 4636, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401928

RESUMO

Protostellar jets are one of the most intriguing signposts in star formation. Recent detection of a jet rotation indicates that they can carry away angular momenta from the innermost edges of the disks, allowing the disks to feed the central protostars. In current jet-launching models, magnetic fields are required to launch and collimate the jets, however, observationally, it is still uncertain if magnetic fields are really present in the jets. Here we report a clear detection of SiO line polarization in the HH 211 protostellar jet. Since this line polarization has been attributed to the Goldreich-Kylafis effect in the presence of magnetic field, our observations show convincingly the presence of magnetic field in a jet from a low-mass protostar. The implied magnetic field could be mainly toroidal, as suggested in current jet-launching models, in order to collimate the jet at large distances.

3.
Nature ; 514(7524): 597-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25337883

RESUMO

Magnetic fields in accretion disks play a dominant part during the star formation process but have hitherto been observationally poorly constrained. Field strengths have been inferred on T Tauri stars and possibly in the innermost part of their accretion disks, but the strength and morphology of the field in the bulk of a disk have not been observed. Spatially unresolved measurements of polarized emission (arising from elongated dust grains aligned perpendicularly to the field) imply average fields aligned with the disks. Theoretically, the fields are expected to be largely toroidal, poloidal or a mixture of the two, which imply different mechanisms for transporting angular momentum in the disks of actively accreting young stars such as HL Tau (ref. 11). Here we report resolved measurements of the polarized 1.25-millimetre continuum emission from the disk of HL Tau. The magnetic field on a scale of 80 astronomical units is coincident with the major axis (about 210 astronomical units long) of the disk. From this we conclude that the magnetic field inside the disk at this scale cannot be dominated by a vertical component, though a purely toroidal field also does not fit the data well. The unexpected morphology suggests that the role of the magnetic field in the accretion of a T Tauri star is more complex than our current theoretical understanding.

4.
Science ; 324(5933): 1408-11, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19520952

RESUMO

Massive stars play a crucial role in the production of heavy elements and in the evolution of the interstellar medium, yet how they form is still a matter of debate. We report high-angular-resolution submillimeter observations toward the massive hot molecular core (HMC) in the high-mass star-forming region G31.41+0.31. We find that the evolution of the gravitational collapse of the HMC is controlled by the magnetic field. The HMC is simultaneously contracting and rotating, and the magnetic field lines threading the HMC are deformed along its major axis, acquiring an hourglass shape. The magnetic energy dominates over the centrifugal and turbulence energies, and there is evidence of magnetic braking in the contracting core.

5.
Science ; 313(5788): 812-4, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16902132

RESUMO

We report high-angular-resolution measurements of polarized dust emission toward the low-mass protostellar system NGC 1333 IRAS 4A. We show that in this system the observed magnetic field morphology is in agreement with the standard theoretical models of the formation of Sun-like stars in magnetized molecular clouds at scales of a few hundred astronomical units; gravity has overcome magnetic support, and the magnetic field traces a clear hourglass shape. The magnetic field is substantially more important than turbulence in the evolution of the system, and the initial misalignment of the magnetic and spin axes may have been important in the formation of the binary system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...