Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genom Data ; 9: 118-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27489776

RESUMO

Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic's Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

2.
Br J Cancer ; 114(11): 1235-42, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27115470

RESUMO

BACKGROUND: WFDC1/Prostate stromal 20 (ps20) is a small secreted protein highly expressed within the prostate stroma. WFDC1/ps20 expression is frequently downregulated or lost in prostate cancer (PCa) and ps20 has demonstrated growth-suppressive functions in numerous tumour model systems, although the mechanisms of this phenomenon are not understood. METHODS: Ps20 was cloned and overexpressed in DU145, PC3, LNCaP and WPMY-1 cells. Cellular growth, cell cycle and apoptosis were characterised. WPMY-1 stromal cells expressing ps20 were characterised by transcriptome microarray and the function of WPMY-1 conditioned media on growth of PCa cell lines was assessed. RESULTS: Prostrate stromal 20 expression enhanced the proliferation of LNCaP cells, whereas stromal WPMY-1 cells were inhibited and underwent increased apoptosis. Prostrate stromal 20-expressing WPMY-1 cells secrete a potently proapoptotic conditioned media. Prostrate stromal 20 overexpression upregulates expression of cyclooxygenase-2 (COX-2) in LNCaP and WPMY-1 cells, and induces expression of a growth-suppressive phenotype, which inhibits proliferation of PCa cells by ps20-expressing WPMY-1 conditioned media. This growth suppression was subsequently shown to be dependent on COX-2 function. CONCLUSIONS: This work posits that expression of ps20 in the prostate stroma can regulate growth of epithelial and other tissues through the prostaglandin synthase pathway, and thereby restricts development and progression of neoplasms. This provides a rational for selective pressure against ps20 expression in tumour- associated stroma.


Assuntos
Adenocarcinoma/metabolismo , Apoptose/fisiologia , Ciclo-Oxigenase 2/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/fisiologia , Comunicação Parácrina , Neoplasias da Próstata/metabolismo , Proteínas/fisiologia , Células Estromais/metabolismo , Adenocarcinoma/patologia , Apoptose/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Indução Enzimática/genética , Matriz Extracelular/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias da Próstata/patologia , Isoformas de Proteínas/fisiologia , Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Microambiente Tumoral
3.
PLoS One ; 8(2): e56217, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468859

RESUMO

Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.


Assuntos
Curcuma/química , Curcuma/genética , Extratos Vegetais/química , Rizoma/química , Terpenos/farmacologia , Transcriptoma , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Repetições de Microssatélites , Anotação de Sequência Molecular , Análise de Sequência de DNA
4.
BMC Genomics ; 13: 663, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23176672

RESUMO

BACKGROUND: Phyto-remedies for diabetic control are popular among patients with Type II Diabetes mellitus (DM), in addition to other diabetic control measures. A number of plant species are known to possess diabetic control properties. Costus pictus D. Don is popularly known as "Insulin Plant" in Southern India whose leaves have been reported to increase insulin pools in blood plasma. Next Generation Sequencing is employed as a powerful tool for identifying molecular signatures in the transcriptome related to physiological functions of plant tissues. We sequenced the leaf transcriptome of C. pictus using Illumina reversible dye terminator sequencing technology and used combination of bioinformatics tools for identifying transcripts related to anti-diabetic properties of C. pictus. RESULTS: A total of 55,006 transcripts were identified, of which 69.15% transcripts could be annotated. We identified transcripts related to pathways of bixin biosynthesis and geraniol and geranial biosynthesis as major transcripts from the class of isoprenoid secondary metabolites and validated the presence of putative norbixin methyltransferase, a precursor of Bixin. The transcripts encoding these terpenoids are known to be Peroxisome Proliferator-Activated Receptor (PPAR) agonists and anti-glycation agents. Sequential extraction and High Performance Liquid Chromatography (HPLC) confirmed the presence of bixin in C. pictus methanolic extracts. Another significant transcript identified in relation to anti-diabetic, anti-obesity and immuno-modulation is of Abscisic Acid biosynthetic pathway. We also report many other transcripts for the biosynthesis of antitumor, anti-oxidant and antimicrobial metabolites of C. pictus leaves. CONCLUSION: Solid molecular signatures (transcripts related to bixin, abscisic acid, and geranial and geraniol biosynthesis) for the anti-diabetic properties of C. pictus leaves and vital clues related to the other phytochemical functions like antitumor, anti-oxidant, immuno-modulatory, anti-microbial and anti-malarial properties through the secondary metabolite pathway annotations are reported. The data provided will be of immense help to researchers working in the treatment of DM using herbal therapies.


Assuntos
Costus/genética , Genes de Plantas , Hipoglicemiantes/metabolismo , Folhas de Planta/genética , Transcriptoma , Ácido Abscísico/metabolismo , Monoterpenos Acíclicos , Sequência de Bases , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Costus/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Monoterpenos/metabolismo , Fitoterapia , Extratos Vegetais/química , Folhas de Planta/metabolismo , Análise de Sequência de DNA , Terpenos/metabolismo
5.
Eukaryot Cell ; 7(6): 1009-18, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18441121

RESUMO

The Rpb4/Rpb7 subcomplex of yeast RNA polymerase II (Pol II) has counterparts in all multisubunit RNA polymerases from archaebacteria to higher eukaryotes. The Rpb4/7 subcomplex in Saccharomyces cerevisiae is unique in that it easily dissociates from the core, unlike the case in other organisms. The relative levels of Rpb4 and Rpb7 in yeasts affect the differential gene expression and stress response. Rpb4 is nonessential in S. cerevisiae and affects expression of a small number of genes under normal growth conditions. Here, using a chromatin immunoprecipitation ("ChIP on-chip") technique, we compared genomewide binding of Rpb4 to that of a core Pol II subunit, Rpb3. Our results showed that in spite of being nonessential for survival, Rpb4 was recruited on coding regions of most transcriptionally active genes, similar to the case with the core Pol II subunit, Rpb3, albeit to a lesser extent. The extent of Rpb4 recruitment increased with increasing gene length. We also observed Pol II lacking Rpb4 to be defective in transcribing long, GC-rich transcription units, suggesting a role for Rpb4 in transcription elongation. This role in transcription elongation was supported by the observed 6-azauracil (6AU) sensitivity of the rpb4Delta mutant. Unlike most phenotypes of rpb4Delta, the 6AU sensitivity of the rpb4Delta strain was not rescued by overexpression of RPB7. This report provides the first instance of a distinct role for Rpb4 in transcription, which is independent of its interacting partner, Rpb7.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Composição de Bases , Imunoprecipitação da Cromatina , Deleção de Genes , Genoma Fúngico , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase II/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...