Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(12): 3444-3455, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38738630

RESUMO

Numerous studies have revealed a close correlation between the levels of apolipoproteins (Apos) (including lipoprotein(a) [Lp(a)]) and an increased risk of cardiovascular disease in recent decades. However, clinically, lipid profiling remains limited to the conventional plasma levels of cholesterol, triglyceride, ApoA1, and ApoB, which brings the necessity to quantify more apolipoproteins in human plasma. In this study, we simultaneously quantified 13 apolipoproteins and Lp(a) in 5 µL of human plasma using the LC-MS/MS platform. A method was developed for the precise detection of Lp(a), ApoA1, A2, A5, B, C1, C2, C3, D, E, H, L1, M, and J. Suitable peptides were selected and optimized to achieve clear separation of each peak. Method validation consisting of linearity, sensitivity, accuracy and precision, recovery, and matrix effects was evaluated. The intra-day CV ranged from 0.58% to 14.2% and the inter-day CV ranged from 0.51% to 13.3%. The recovery rates ranged from 89.8% to 113.7%, while matrix effects ranged from 85.4% to 113.9% for all apolipoproteins and Lp(a). Stability tests demonstrated that these apolipoproteins remained stable for 3 days at 4 °C and 7 days at -20 °C. This validated method was successfully applied to human plasma samples obtained from 45 volunteers. The quantitative results of ApoA1, ApoB, and Lp(a) exhibited a close correlation with the results from the immunity transmission turbidity assay. Collectively, we developed a robust assay that can be used for high-throughput quantification of apolipoproteins and Lp(a) simultaneously for investigating related risk factors in patients with dyslipidemia.


Assuntos
Apolipoproteínas , Lipoproteína(a) , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Apolipoproteínas/sangue , Lipoproteína(a)/sangue , Cromatografia Líquida/métodos , Análise Química do Sangue/métodos , Espectrometria de Massa com Cromatografia Líquida
2.
Pharmacol Res ; 205: 107224, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777113

RESUMO

INTRODUCTION: Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES: To explore the role of Midline-1 (Mid1) in synovial activation. METHODS: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS: An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION: Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.

3.
Pharmacol Rev ; 76(4): 579-598, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38622001

RESUMO

In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.


Assuntos
Imunoconjugados , Medicina de Precisão , Doenças Reumáticas , Humanos , Doenças Reumáticas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Medicina de Precisão/métodos , Animais , Antirreumáticos/uso terapêutico , Antirreumáticos/farmacologia
4.
Antioxidants (Basel) ; 12(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001831

RESUMO

Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.

5.
Sci Total Environ ; 884: 163803, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137360

RESUMO

Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Humanos , Masculino , Feminino , Animais , Material Particulado/efeitos adversos , Material Particulado/análise , Caracteres Sexuais , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poeira , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental
6.
Environ Pollut ; 328: 121603, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062408

RESUMO

Air particulate matter 2.5 (PM2.5) has been demonstrated to exaggerate insulin resistance in both human and animal studies. However, the exact molecular mechanisms remain elusive. This study sought to assess the role of NLRP3 inflammasome in PM2.5 exposure-induced insulin resistance and explore the underlying mechanisms. Wild-type (WT), Nlrp3-/-, Tlr4Lps-d, or Nrf2-/- mice, on a normal diet or high-fat diet (HFD), were exposed to PM2.5 or filtered air (FA) in a whole-body exposure facility. Priming (first signal) and assembly (second signal) of NLRP3 inflammasome activation were assessed by measuring the transcription of Nlrp3/Il-1ß and detecting the activity of caspase-1 and secretion of IL-1ß. We found PM2.5 exposure exaggerated insulin resistance and increased IL-1ß production in the HFD-fed WT mice, but not Nlrp3-/- mice. Gene expressions of Nlrp3 and Il-1ß in the lungs and peritoneal macrophages were upregulated in WT mice exposed to PM2.5. When stimulated with LPS (first signal) or monosodium urate (second signal), PM2.5 exposure was able to enhance the activity of caspase-1 and IL-1ß secretion, suggesting that PM2.5 may serve as a stimulus of either the first or second signal for NLRP3 inflammasome activation. Effects of PM2.5 on caspase-1 activation and IL-1ß secretion were partially blocked in Tlr4Lps-d mice. Reactive oxygen species (ROS), co-localization of NLRP3 and mitochondria, and secondary lysosomes in macrophages were increased after PM2.5 exposure, while deficiency of antioxidant gene Nrf2 in mice significantly enhanced PM2.5-induced secretion of IL-1ß. Imaging flow cytometry and transmission electron microscopy demonstrated an engulfment of PM2.5 particles by macrophages, while suppression of phagocytosis by cytochalasin D abolished PM2.5-induced transcription of Nlrp3/Il-1ß. Our results demonstrated a critical role of NLRP3 inflammasome in PM2.5 exaggerated insulin resistance, and multiple pathways in the first and second signals of NLRP3 inflammasome activation may be involved.


Assuntos
Poluição do Ar , Resistência à Insulina , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Resistência à Insulina/fisiologia , Lipopolissacarídeos , Receptor 4 Toll-Like/genética , Fator 2 Relacionado a NF-E2 , Material Particulado/toxicidade , Poeira , Dieta Hiperlipídica , Caspases
7.
Adv Sci (Weinh) ; 10(9): e2204194, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36683148

RESUMO

T cells play a crucial role in atherosclerosis, with its infiltration preceding the formation of atheroma. However, how T-cell infiltration is regulated in atherosclerosis remains largely unknown. Here, this work demonstrates that dipeptidyl peptidase-4 (DPP4) is a novel regulator of T-cell motility in atherosclerosis. Single-cell ribonucleic acid (RNA) sequencing and flow cytometry show that CD4+ T cells in atherosclerotic patients display a marked increase of DPP4. Lack of DPP4 in hematopoietic cells or T cells reduces T-cell infiltration and atherosclerotic plaque volume in atherosclerosis mouse models. Mechanistically, DPP4 deficiency reduces T-cell motility by suppressing the expression of microtubule associated protein midline-1 (Mid1) in T cells. Deletion of either DPP4 or Mid1 inhibits chemokine-induced shape change and motility, while restitution of Mid1 in Dpp4-/- T cell largely restores its migratory ability. Thus, DPP4/Mid1, as a novel regulator of T-cell motility, may be a potential inflammatory target in atherosclerosis.


Assuntos
Aterosclerose , Inibidores da Dipeptidil Peptidase IV , Placa Aterosclerótica , Animais , Camundongos , Dipeptidil Peptidase 4/genética , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linfócitos T/metabolismo
8.
Front Immunol ; 13: 997578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569936

RESUMO

Glucagon-like peptide-1 (GLP-1) is a 30-amino acid hormone secreted by L cells in the distal ileum, colon, and pancreatic α cells, which participates in blood sugar regulation by promoting insulin release, reducing glucagon levels, delaying gastric emptying, increasing satiety, and reducing appetite. GLP-1 specifically binds to the glucagon-like peptide-1 receptor (GLP-1R) in the body, directly stimulating the secretion of insulin by pancreatic ß-cells, promoting proliferation and differentiation, and inhibiting cell apoptosis, thereby exerting a glycemic lowering effect. The glycemic regulating effect of GLP-1 and its analogues has been well studied in human and murine models in the circumstance of many diseases. Recent studies found that GLP-1 is able to modulate innate immune response in a number of inflammatory diseases. In the present review, we summarize the research progression of GLP-1 and its analogues in immunomodulation and related signal pathways.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Insulina , Camundongos , Humanos , Animais , Insulina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicemia , Imunidade Inata
9.
Biomolecules ; 12(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358977

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a group of immature and heterogeneous myeloid cells with immunosuppressive functions. MDSCs play important roles in the pathogenesis of cancer, chronic inflammatory diseases, and many autoimmune disorders. The accumulation and activation of MDSCs can be regulated by tumor necrosis factor α (TNF-α). In this review, we summarize the roles played by TNF-α in the recruitment, immunosuppressive functions, and chemotaxis of MDSCs, and discuss the potential therapeutic effects of TNF-α upon these cells in tumor growth and some inflammatory disorders.


Assuntos
Doenças Autoimunes , Células Supressoras Mieloides , Neoplasias , Humanos , Fator de Necrose Tumoral alfa , Transdução de Sinais , Quimiotaxia , Neoplasias/patologia
10.
Mil Med Res ; 9(1): 45, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986429

RESUMO

Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors are commonly used treatments for patients with type 2 diabetes mellitus (T2DM). Both anti-diabetic treatments function by playing key modulatory roles in the incretin system. Though these drugs have been deemed effective in treating T2DM, the Food and Drug Administration (FDA) and some members of the scientific community have questioned the safety of these therapeutics relative to important cardiovascular endpoints. As a result, since 2008, the FDA has required all new drugs for glycemic control in T2DM patients to demonstrate cardiovascular safety. The present review article strives to assess the safety and benefits of incretin-based therapy, a new class of antidiabetic drug, on the health of patient cardiovascular systems. In the process, this review will also provide a physiological overview of the incretin system and how key components function in T2DM.


Assuntos
Sistema Cardiovascular , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Humanos , Incretinas/efeitos adversos , Estados Unidos
12.
Front Immunol ; 13: 830863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309368

RESUMO

Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an ubiquitously expressed protease presented as either a membrane-bound or soluble form. DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular processes by directly binding to a number of ligands, including adenosine deaminase, CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due to its implication in fibrotic response and immunoregulation, increasing studies are focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting protein, DPP4 possesses multiple functions in different types of cells, including both enzymatic and non-enzymatic functions. However, most of the review articles on the role of DPP4 in autoimmune disease were focused on the association between DPP4 enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive summary of DPP4's immunoregulatory actions including both enzymatic dependent and independent functions is needed. In this article, we will review the recent advances of DPP4 in immune regulation and autoimmune rheumatic disease.


Assuntos
Doenças Autoimunes , Inibidores da Dipeptidil Peptidase IV , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Humanos , Imunidade
13.
Front Immunol ; 13: 772446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154099

RESUMO

Glucagon-like peptide-1 (GLP-1) is an insulinotropic peptide that signals through the GLP-1 receptor (GLP-1R). GLP-1R, therefore, plays a critical role in diabetes and cardiovascular disease. Whether GLP-1R is involved in inflammatory disease such as gout remains unclear. Macrophages are critical effector cells in the pathogenesis of gout, a common form of inflammatory arthritis caused by the deposition of uric acid in joints. The expression of GLP-1R at the protein level is controversial due to the lack of specificity of existing antibodies against GLP-1R. Using a transgenic mouse model expressing enhanced green fluorescent protein (EGFP) under the control of GLP-1R promoter, here we confirmed the expression of GLP-1R by macrophages. M2 type macrophages and Ly6C+ macrophages expressed higher levels of GLP-1R, compared to their counterparts. GLP-1R deficient macrophages displayed a reduced the migratory ability and an enhanced expression of interleukin (IL)-6, while the expression of IL-1ß was not affected. In monosodium urate (MSU) crystal-induced peritonitis, an experimental model of gout, the recruitment of macrophages, especially M2 macrophages, was significantly suppressed in GLP-1R knockout mice compared to wild-type mice. In conclusion, our data suggests that GLP-1R plays a critical role in macrophage migration in MSU-induced inflammation.


Assuntos
Movimento Celular/imunologia , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Macrófagos/imunologia , Peritonite/genética , Peritonite/imunologia , Ácido Úrico/administração & dosagem , Animais , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/imunologia , Peritonite/induzido quimicamente
14.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166237, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339838

RESUMO

R-loops are naturally occurring transcriptional intermediates containing RNA/DNA hybrids. Excessive R-loops cause genomic instability, DNA damage, and replication stress. Senataxin-associated exonuclease (San1) is a protein that interacts with Senataxin (SETX), a helicase resolving R-loops. It remains unknown if R-loops-induced DNA damage plays a role in the heart, especially in the proliferative neonatal cardiomyocytes (CMs). San1-/- mice were generated using the CRISPR/Cas9 technique. The newborn San1-/- mice show no overt phenotype, but their hearts were smaller with larger, yet fewer CMs. CM proliferation was impaired with reduced cell cycle-related transcripts and proteins. S9.6 staining revealed that excessive R-loops accumulated in the nucleus of neonatal San1-/- CMs. Increased γH2AX staining on newborn and adult heart sections exhibited increased DNA damage. Similarly, San1-/- AC16-cardiomyocytes showed cumulative R-loops and DNA damage, leading to the activation of cell cycle checkpoint kinase ATR and PARP1 hyperactivity, arresting G2/M cell-cycle and CM proliferation. Together, the present study uncovers an essential role of San1 in resolving excessive R-loops that lead to DNA damage and repressing CM proliferation, providing new insights into a novel biological function of San1 in the neonatal heart. San1 may serve as a novel therapeutic target for the treatment of hypoplastic cardiac disorders.


Assuntos
Cardiomiopatias/genética , Exodesoxirribonucleases/deficiência , Insuficiência Cardíaca/genética , Ventrículos do Coração/patologia , Transativadores/deficiência , Animais , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Linhagem Celular , Dano ao DNA , Modelos Animais de Doenças , Exodesoxirribonucleases/genética , Técnicas de Inativação de Genes , Insuficiência Cardíaca/patologia , Ventrículos do Coração/citologia , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Cultura Primária de Células , Estruturas R-Loop , Transativadores/genética
15.
Environ Health Perspect ; 128(12): 127003, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33275451

RESUMO

BACKGROUND: Traffic-related air pollution (TRAP) is made up of complex mixtures of particulate matter, gases and volatile compounds. However, the effects of TRAP on the cardiopulmonary system in most animal studies have been tested using acute exposure to singular pollutants. The cardiopulmonary effects and molecular mechanisms in animals that are chronically exposed to unmodified air pollution as a whole have yet to be studied. Additionally, sex-dependent toxicity of TRAP exposure has rarely been evaluated. OBJECTIVES: This study sought to assess the cardiopulmonary effect of chronic exposure to unmodified, real-world TRAP in both female and male rats. METHODS: Four-week-old male and female rats were exposed to TRAP or filtered air for 14 months in a novel facility drawing air from a major freeway tunnel system in Northern California. Inflammation and oxidative stress markers were examined in the lung, heart, spleen, and plasma, and TRAP deposits were quantified in the lungs of both male and female rats. RESULTS: Elemental analysis showed higher levels of eight elements in the female lungs and one element in the male lungs. Expression of genes related to fibrosis, aging, oxidative stress, and inflammation were higher in the rat hearts exposed to TRAP, with female rats being more susceptible than males. Enhanced collagen accumulation was found only in the TRAP-exposed female hearts. Plasma cytokine secretion was higher in both female and male rats, but inflammatory macrophages were higher only in TRAP-exposed male spleens. DISCUSSION: Our results in rats suggest pathological consequences from chronic TRAP exposure, including sex differences indicating females may be more susceptible to TRAP-induced cardiac fibrosis. https://doi.org/10.1289/EHP7045.


Assuntos
Poluição do Ar/estatística & dados numéricos , Emissões de Veículos , Animais , Teste de Esforço , Feminino , Masculino , Ratos , Testes de Toxicidade Crônica
16.
Lancet Rheumatol ; 2(9): e557-e564, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32838309

RESUMO

BACKGROUND: In the ongoing COVID-19 pandemic, the susceptibility of patients with rheumatic diseases to COVID-19 remains unclear. We aimed to investigate susceptibility to COVID-19 in patients with autoimmune rheumatic diseases during the ongoing COVID-19 pandemic. METHODS: We did a multicentre retrospective study of patients with autoimmune rheumatic diseases in Hubei province, the epicentre of the COVID-19 outbreak in China. Patients with rheumatic diseases were contacted through an automated telephone-based survey to investigate their susceptibility to COVID-19. Data about COVID-19 exposure or diagnosis were collected. Families with a documented history of COVID-19 exposure, as defined by having at least one family member diagnosed with COVID-19, were followed up by medical professionals to obtain detailed information, including sex, age, smoking history, past medical history, use of medications, and information related to COVID-19. FINDINGS: Between March 20 and March 30, 2020, 6228 patients with autoimmune rheumatic diseases were included in the study. The overall rate of COVID-19 in patients with an autoimmune rheumatic disease in our study population was 0·43% (27 of 6228 patients). We identified 42 families in which COVID-19 was diagnosed between Dec 20, 2019, and March 20, 2020, in either patients with a rheumatic disease or in a family member residing at the same physical address during the outbreak. Within these 42 families, COVID-19 was diagnosed in 27 (63%) of 43 patients with a rheumatic disease and in 28 (34%) of 83 of their family members with no rheumatic disease (adjusted odds ratio [OR] 2·68 [95% CI 1·14-6·27]; p=0·023). Patients with rheumatic disease who were taking hydroxychloroquine had a lower risk of COVID-19 infection than patients taking other disease-modifying anti-rheumatic drugs (OR 0·09 [95% CI 0·01-0·94]; p=0·044). Additionally, the risk of COVID-19 was increased with age (adjusted OR 1·04 [95%CI 1·01-1·06]; p=0·0081). INTERPRETATION: Patients with autoimmune rheumatic disease might be more susceptible to COVID-19 infection than the general population. FUNDING: National Natural Science Foundation of China and the Tongji Hospital Clinical Research Flagship Program.

18.
Sci Rep ; 9(1): 17423, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757983

RESUMO

Exposure to ambient air particulate matter (PM2.5) is well established as a risk factor for cardiovascular and pulmonary disease. Both epidemiologic and controlled exposure studies in humans and animals have demonstrated an association between air pollution exposure and metabolic disorders such as diabetes. Given the central role of the liver in peripheral glucose homeostasis, we exposed mice to filtered air or PM2.5 for 16 weeks and examined its effect on hepatic metabolic pathways using stable isotope resolved metabolomics (SIRM) following a bolus of 13C6-glucose. Livers were analyzed for the incorporation of 13C into different metabolic pools by IC-FTMS or GC-MS. The relative abundance of 13C-glycolytic intermediates was reduced, suggesting attenuated glycolysis, a feature found in diabetes. Decreased 13C-Krebs cycle intermediates suggested that PM2.5 exposure led to a reduction in the Krebs cycle capacity. In contrast to decreased glycolysis, we observed an increase in the oxidative branch of the pentose phosphate pathway and 13C incorporations suggestive of enhanced capacity for the de novo synthesis of fatty acids. To our knowledge, this is one of the first studies to examine 13C6-glucose utilization in the liver following PM2.5 exposure, prior to the onset of insulin resistance (IR).

19.
Int J Obes (Lond) ; 43(12): 2434-2447, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31040394

RESUMO

OBJECTIVE: Myeloid-related protein-14 (MRP14) and its binding partner MRP8 play an essential role in innate immune function and have been implicated in a variety of inflammatory diseases. However, the role of MRP14 in obesity-induced inflammation and insulin resistance is not well defined. This study investigated the role of MRP14 in macrophage-mediated adipose tissue inflammation and obesity-induced insulin resistance. SUBJECTS AND RESULTS: Wild-type (WT) and Mrp14-/- mice were fed with a high-fat diet or normal chow for 12 weeks. Tissue-resident macrophages in both adipose tissue and liver from obese WT mice expressed higher levels of MRP14 in the visceral adipose fat and liver compared with the lean mice. Mrp14-/- mice demonstrated a significantly improved postprandial insulin sensitivity, as measured by intraperitoneal glucose tolerance test and insulin tolerance testing. Macrophages secreted MRP14 in response to inflammatory stimuli, such as LPS. Extracellular MRP8/14 induced the production of CCL5 and CXCL9. Deficiency of MRP14 did not affect macrophage proliferation, mitochondrial respiration, and glycolytic function, but Mrp14-/- macrophages showed a reduced ability to attract T cells. Depletion of the extracellular MRP14 reduced the T cell attracting ability of WT macrophages to a level similar to Mrp14-/- macrophages. CONCLUSION: Our data indicate that MRP14 deficiency decreases obesity-induced insulin resistance and MRP8/14 regulates T-cell recruitment through the induction of T-cell chemoattractant production from macrophages.


Assuntos
Calgranulina B/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/fisiologia , Obesidade/metabolismo , Linfócitos T/fisiologia , Animais , Calgranulina B/genética , Citocinas/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
20.
Front Immunol ; 10: 501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941135

RESUMO

Gout is one of the most common metabolic disorders in human. Previous studies have shown that the disease activity is closely associated with sympathetic nervous system (SNS). α2B-adrenergic receptor (α2BAR), a subtype of α2 adrenergic receptor, plays a critical role in many diseases. However, the role of α2BAR in the pathogenesis of gout remains unclear. Here, we assessed the role of α2BAR in the monosodium urate (MSU) crystals-induced peritonitis that mimics human gout by using the α2BAR-overexpressing mice (α2BAR-Tg). We found that the number of recruited neutrophils was significantly increased in the α2BAR-Tg mice after MSU treatment, when compared with wild type mice. In contrast, the number of macrophages was not changed. Importantly, there is no difference in the IL-1ß levels and caspase-1 activity between wild type and α2BAR-Tg mice in the gout animal model. Notably, the enhanced neutrophil migration in α2BAR-Tg mice was dependent on the α2BAR overexpression in neutrophils, but not resulted from other tissues or cells with α2BAR overexpression. In conclusion, our data provide a direct evidence that α2BAR plays a critical role in neutrophil migration and MSU-induced inflammation.


Assuntos
Inflamação/induzido quimicamente , Inflamação/metabolismo , Neutrófilos/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Ácido Úrico/farmacologia , Animais , Modelos Animais de Doenças , Gota/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Infiltração de Neutrófilos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...