Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 790221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356124

RESUMO

Wild introgressions play a crucial role in crop improvement by transferring important novel alleles and broadening allelic diversity of cultivated germplasm. In this study, two stable backcross alien introgression lines 166s and 14s derived from Swarn/Oryza nivara IRGC81848 were used as parents to generate populations to map quantitative trait loci (QTLs) for yield-related traits. Field evaluation of yield-related traits in F2, F3, and F4 population was carried out in normal irrigated conditions during the wet season of 2015 and dry seasons of 2016 and 2018, respectively. Plant height, tiller number, productive tiller number, total dry matter, and harvest index showed a highly significant association to single plant yield in F2, F3, and F4. In all, 21, 30, and 17 QTLs were identified in F2, F2:3, and F2:4, respectively, for yield-related traits. QTLs qPH6.1 with 12.54% phenotypic variance (PV) in F2, qPH1.1 with 13.01% PV, qTN6.1 with 10.08% PV in F2:3, and qTGW6.1 with 15.19% PV in F2:4 were identified as major effect QTLs. QTLs qSPY4.1 and qSPY6.1 were detected for grain yield in F2 and F2:3 with PV 8.5 and 6.7%, respectively. The trait enhancing alleles of QTLs qSPY4.1, qSPY6.1, qPH1.1, qTGW6.1, qTGW8.1, qGN4.1, and qTDM5.1 were from O. nivara. QTLs of the yield contributing traits were found clustered in the same chromosomal region. qTGW8.1 was identified in a 2.6 Mb region between RM3480 and RM3452 in all three generations with PV 6.1 to 9.8%. This stable and consistent qTGW8.1 allele from O. nivara can be fine mapped for identification of causal genes. From this population, lines C212, C2124, C2128, and C2143 were identified with significantly higher SPY and C2103, C2116, and C2117 had consistently higher thousand-grain weight values than both the parents and Swarna across the generations and are useful in gene discovery for target traits and further crop improvement.

2.
Physiol Mol Biol Plants ; 24(6): 1147-1164, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425431

RESUMO

Improvement of photosynthetic traits is a promising strategy to break the yield potential barrier of major food crops. Leaf photosynthetic traits were evaluated in a set of high yielding Oryza sativa, cv. Swarna × Oryza nivara backcross introgression lines (BILs) along with recurrent parent Swarna, both in wet (Kharif) and dry (Rabi) seasons in normal irrigated field conditions. Net photosynthesis (P N) ranged from 15.37 to 23.25 µmol (CO2) m-2 s-1 in the BILs. Significant difference in P N was observed across the seasons and genotypes. Six BILs showed high photosynthesis compared with recurrent parent in both seasons. Chlorophyll content showed minimum variation across the seasons for any specific BIL but significant variation was observed among BILs. Significant positive association between photosynthetic traits and yield traits was observed, but this association was not consistent across seasons mainly due to contrasting weather parameters in both seasons. BILs 166s and 248s with high and consistent photosynthetic rate exhibited stable high yield levels in both the seasons compared to the recurrent parent Swarna. There is scope to exploit photosynthetic efficiency of wild and weedy rice to identify genes for improvement of photosynthetic rate in cultivars.

3.
Front Plant Sci ; 7: 1530, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27807437

RESUMO

Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions.

4.
3 Biotech ; 6(1): 95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330165

RESUMO

Genetic diversity among 23 rice genotypes including wild species and cultivars of indica, japonica, aus and aromatic type was investigated using 165 genomewide core set microsatellite (SSR) markers. This genotypic characterization was undertaken to know the genetic similarity among the parental lines to be used in developing a set of chromosome segment substitution lines. In all, 253 alleles were identified using 77 polymorphic SSRs, and polymorphism information content ranged from 0.31 to 0.97 with a mean of 0.79. Cluster analysis grouped the genotypes into three clusters at a genetic similarity of 0.26-0.75. Wild accessions grouped together in cluster-I, indica cultivars formed cluster-II, and aromatic, japonica and aus types came under cluster-III. Principal component analysis also showed similar results. The genotypic data was analyzed using STRUCTURE, and genotypes were grouped into four populations. RM1018 on chromosome 4, RM8009 on chromosome 7, and RM273 on chromosome 12 amplified alleles specific to wild accessions. The information obtained from core set markers would help in selecting diverse parents including wild accessions and for tracking alleles in mapping or breeding populations.

5.
Front Plant Sci ; 6: 1044, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640473

RESUMO

In changing climatic conditions, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical, and molecular levels is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in 11 popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS), antioxidants, and photosynthesis were studied at vegetative and reproductive phases, which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified, which will be an important resource to develop high temperature-tolerant rice cultivars. Interestingly, Nagina22 emerged as the best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activities, lesser reduction in net photosynthetic rate (P N ), high transpiration rate (E), and other photosynthetic/fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Furthermore, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant) and Vandana (susceptible) at flowering phase, strengthening the fact that N22 performed better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes that are needed to be characterized to address the challenges of extreme conditions of future climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...