Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 334: 111736, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211221

RESUMO

The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - ß-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, ß-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.


Assuntos
Etilenos , Estresse Salino , Solanum lycopersicum , Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Estresse Salino/fisiologia
2.
Plant Signal Behav ; 16(11): 1950888, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34252347

RESUMO

Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.


Assuntos
Etilenos/biossíntese , Ácido Salicílico/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sódio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
3.
Commun Integr Biol ; 7(1): e27683, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24778758

RESUMO

Plant growth promoting (PGP) rhizobacteria, a beneficial microbe colonizing plant roots, enhanced crop productivity and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. The keratinous waste which comprises feathers, hairs, nails, skin and wool creates problem of solid waste management due to presence of highly recalcitrant keratin. The multi traits rhizobacteria effective to remove both keratine from the environment by producing keratinase enzyme and to eradicate the chemical fertilizer by providing different PGP activity is novel achievement. In the present study, the effective PM2 strain of PGPR was isolated from rhizospheric soil of mustard (Brassica juncea) field, Pantnagar and they were identified on the basis of different biochemical tests as belonging to Bacillus genera. Different plant growth promoting activity, feather degradation and keratinolytic activity was performed and found very effective toward all the parameters. Furthermore, the efficient strain PM2 was identified on the basis of 16s rRNA sequencing and confirmed as Bacillus cereus. The strain PM2 might be used efficiently for keratinous waste management and PGP activity. Therefore, the present study suggests that Bacillus cereus have multi traits activity which extremely useful for different PGP activity and biotechnological process involving keratin hydrolysis, feather biodegradation or in the leather industry.

4.
Plant Signal Behav ; 8(6): e24564, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603954

RESUMO

Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.


Assuntos
Temperatura Alta , Estresse Fisiológico , Triticum/fisiologia , Clorofila/metabolismo , Genótipo , Malondialdeído/metabolismo , Prolina/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...