Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 49(1): 76, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29065868

RESUMO

BACKGROUND: Building an efficient reference population for genomic selection is an issue when the recorded population is small and phenotypes are poorly informed, which is often the case in sheep breeding programs. Using stochastic simulation, we evaluated a genomic design based on a reference population with medium-density genotypes [around 45 K single nucleotide polymorphisms (SNPs)] of dams that were imputed from very low-density genotypes (≤ 1000 SNPs). METHODS: A population under selection for a maternal trait was simulated using real genotypes. Genetic gains realized from classical selection and genomic selection designs were compared. Genomic selection scenarios that differed in reference population structure (whether or not dams were included in the reference) and genotype quality (medium-density or imputed to medium-density from very low-density) were evaluated. RESULTS: The genomic design increased genetic gain by 26% when the reference population was based on sire medium-density genotypes and by 54% when the reference population included both sire and dam medium-density genotypes. When medium-density genotypes of male candidates and dams were replaced by imputed genotypes from very low-density SNP genotypes (1000 SNPs), the increase in gain was 22% for the sire reference population and 42% for the sire and dam reference population. The rate of increase in inbreeding was lower (from - 20 to - 34%) for the genomic design than for the classical design regardless of the genomic scenario. CONCLUSIONS: We show that very low-density genotypes of male candidates and dams combined with an imputation process result in a substantial increase in genetic gain for small sheep breeding programs.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Genética , Seleção Artificial , Ovinos/genética , Animais , Feminino , Frequência do Gene , Genótipo , Masculino
2.
Genet Sel Evol ; 46: 48, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25158754

RESUMO

BACKGROUND: The major prolificacy gene FecL was first described in the Lacaune sheep meat breed Ovi-Test in 1998. A few studies estimated the effect of this gene on prolificacy but little data is available. In 2010, the Ovi-Test cooperative started genotyping FecL in all of their replacement ewe lambs. Thanks to the large amount of genotyping data that is available now, gene effects on litter size and other relevant traits can be estimated more accurately. METHODS: Our study included 5775 ewes genotyped since 2010 and 1025 sires genotyped since 2002. Performances and pedigrees were extracted from the French national database for genetic evaluation and research. Analysis of the effect of the gene on different traits was based on linear or threshold genetic animal models using the ASReml software. RESULTS: The female population was composed of 71% homozygous wild type ewes (++), 27% heterozygous ewes for the FecL mutation (L+) and 2% homozygous mutant (LL) ewes. On average, L + ewes produced 0.5 more lambs per lambing than ++ ewes. The FecL gene not only affected the mean litter size but also its variability, which was lower for ++ than for L + ewes. Fertility after insemination was higher for L + ewes than for ++ ewes. Lambs from ++ dams were heavier (+300 g) than the lambs of L + dams and the mortality of twin lambs born from ++ dams was lower than those from L + dams. In addition, bias in estimated breeding values for prolificacy when ignoring the existence of this major gene was quantified. CONCLUSIONS: The effect of the FecL gene on prolificacy was estimated more accurately and we show that this gene affects both the mean and the variability of litter size and other traits. This paper also shows that ignoring the existence of this major gene in genetic evaluation of prolificacy can lead to a large overestimation of polygenic breeding values.


Assuntos
Carne , Ovinos/genética , Alelos , Animais , Cruzamento , Feminino , Fertilidade/genética , Frequência do Gene , Genética Populacional , Técnicas de Genotipagem/veterinária , Homozigoto , Tamanho da Ninhada de Vivíparos/genética , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...