Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-506332

RESUMO

The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding - prevented PKR activation, inhibited {beta}-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Observations made for the N protein of human coronavirus 229E suggests that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. SIGNIFICANCE STATEMENTSARS-CoV-2 nucleocapsid protein N is an antagonist of innate immunity but how it averts virus detection by intracellular sensors remains subject to debate. We provide evidence that SARS-CoV-2 N, by sequestering dsRNA through domain N2b, prevents PKR-mediated activation of the integrated stress response as well as detection by RIG-I-like receptors and ensuing type I interferon expression. This function, conserved in human coronavirus 229E, is not affected by mutations that prevent posttranslational modifications, previously implicated in immune evasion, or that target its binding to stress granule scaffold proteins. Our findings further our understanding of how SARS-CoV-2 evades innate immunity, how this may drive viral evolution and why increased N expression may have been a selective advantage to SARS-CoV-2 variants of concern.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-003699

RESUMO

Human coronaviruses OC43 and HKU1 are respiratory pathogen of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spill-over. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase HE acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity towards clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked-out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor-binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations selected for cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and co-evolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses (IAVs). Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...