Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(24): 241101, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972371

RESUMO

The predissociation spectrum of the Cl-35(H2) complex is measured between 450 and 800 cm-1 in a multipole radiofrequency ion trap at different temperatures using the FELIX infrared free electron laser. Above a certain temperature, the removal of the Cl-(p-H2) para nuclear spin isomer by ligand exchange to the Cl-(o-H2) ortho isomer is suppressed effectively, thereby making it possible to detect the spectrum of this more weakly bound complex. At trap temperatures of 30.5 and 41.5 K, we detect two vibrational bands of Cl-(p-H2) at 510(1) and 606(1) cm-1. Using accurate quantum calculations, these bands are assigned to transitions to the inter-monomer vibrational modes (v1,v2 l2 ) = (0, 20) and (1, 20), respectively.

2.
Phys Rev Lett ; 117(12): 123001, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689267

RESUMO

The existence of negative ions in interstellar clouds has been associated for several decades with the process of radiative electron attachment. In this Letter, we report compelling evidence supporting the fact that the radiative attachment of a low-energy electron is inefficient to form the carbon chain anions CN^{-}, C_{3}N^{-}, and C_{5}N^{-} detected in interstellar clouds. The validity of the approach is confirmed by good agreement with experimental data obtained for the inverse photodetachment process, which represents the major cause of anion destruction in interstellar space. As a consequence, we suggest alternative models that could explain the formation of anions.

3.
J Chem Phys ; 142(23): 234309, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093561

RESUMO

A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN(-), C4H(-), and C2H(-). Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN(-) is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10(-16) cm(3)/s for CN(-), 7 × 10(-17) cm(3)/s for C2H(-), and 2 × 10(-16) cm(3)/s for C4H(-). These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...