Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 347(6229): 1436-41, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25700176

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Exoma/genética , Predisposição Genética para Doença , Proteínas Serina-Treonina Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ciclo Celular , Feminino , Genes , Estudos de Associação Genética , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Risco , Análise de Sequência de DNA , Proteína Sequestossoma-1 , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Adulto Jovem
2.
PLoS Genet ; 10(10): e1004704, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299611

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive degeneration of motor neurons, ultimately leading to paralysis and death. Approximately 10% of ALS cases are familial, with the remaining 90% of cases being sporadic. Genetic studies in familial cases of ALS have been extremely informative in determining the causative mutations behind ALS, especially as the same mutations identified in familial ALS can also cause sporadic disease. However, the cause of ALS in approximately 30% of familial cases and in the majority of sporadic cases remains unknown. Sporadic ALS cases represent an underutilized resource for genetic information about ALS; therefore, we undertook a targeted sequencing approach of 169 known and candidate ALS disease genes in 242 sporadic ALS cases and 129 matched controls to try to identify novel variants linked to ALS. We found a significant enrichment in novel and rare variants in cases versus controls, indicating that we are likely identifying disease associated mutations. This study highlights the utility of next generation sequencing techniques combined with functional studies and rare variant analysis tools to provide insight into the genetic etiology of a heterogeneous sporadic disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Éxons , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Apolipoproteínas E/genética , Proteína C9orf72 , Estudos de Casos e Controles , DNA Helicases , Feminino , Frequência do Gene , Variação Genética , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Enzimas Multifuncionais , Polimorfismo de Nucleotídeo Único , Proteínas/genética , RNA Helicases/genética , Proteína FUS de Ligação a RNA/genética
3.
Brain Res ; 1575: 66-71, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24780531

RESUMO

The alpha-dystroglycanopathies are genetically heterogeneous muscular dystrophies that result from hypoglycosylation of alpha-dystroglycan (α-DG). Alpha-dystroglycan is an essential link between the extracellular matrix and the muscle fiber sarcolemma, and proper glycosylation is critical for its ability to bind to ligands in the extracellular matrix. We sought to identify the genetic basis of alpha-dystroglycanopathy in a family wherein the affected individuals presented with congenital muscular dystrophy, brain abnormalities and generalized epilepsy. We performed whole exome sequencing and identified compound heterozygous GMPPB mutations in the affected children. GMPPB is an enzyme in the glycosylation pathway, and GMPPB mutations were recently linked to eight cases of alpha-dystroglycanopathy with a range of symptoms. We identified a novel mutation in GMPPB (p.I219T) as well as a previously published mutation (p.R287Q). Thus, our work further confirms a role for GMPPB defects in alpha-dystroglycanopathy, and suggests that glycosylation may play a role in the neuronal membrane channels or networks involved in the physiology of generalized epilepsy syndromes. This article is part of a Special Issue entitled RNA Metabolism 2013.


Assuntos
Epilepsia Generalizada/genética , Mutação , Nucleotidiltransferases/genética , Síndrome de Walker-Warburg/genética , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Linhagem
4.
Neuromuscul Disord ; 24(5): 431-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594375

RESUMO

Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D.


Assuntos
Análise Mutacional de DNA/métodos , Família , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Proteínas do Tecido Nervoso/genética , Adulto , Exoma , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Linhagem , População Branca/genética
5.
Nat Genet ; 46(2): 152-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336168

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset neurodegenerative disease primarily affecting motor neurons. A unifying feature of many proteins associated with ALS, including TDP-43 and ataxin-2, is that they localize to stress granules. Unexpectedly, we found that genes that modulate stress granules are strong modifiers of TDP-43 toxicity in Saccharomyces cerevisiae and Drosophila melanogaster. eIF2α phosphorylation is upregulated by TDP-43 toxicity in flies, and TDP-43 interacts with a central stress granule component, polyA-binding protein (PABP). In human ALS spinal cord neurons, PABP accumulates abnormally, suggesting that prolonged stress granule dysfunction may contribute to pathogenesis. We investigated the efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models. Treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons. These findings indicate that the dysfunction induced by prolonged stress granule formation might contribute directly to ALS and that compounds that mitigate this process may represent a novel therapeutic approach.


Assuntos
Adenina/análogos & derivados , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Indóis/farmacologia , Adenina/farmacologia , Análise de Variância , Animais , Ataxinas , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Ontologia Genética , Ensaios de Triagem em Larga Escala , Humanos , Immunoblotting , Imuno-Histoquímica , Proteínas Luminescentes , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a Poli(A)/metabolismo , Interferência de RNA , Retina/metabolismo , Retina/ultraestrutura , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas , Medula Espinal/citologia , Medula Espinal/metabolismo , Proteína Vermelha Fluorescente
6.
Nat Neurosci ; 16(7): 851-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23708140

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic risk factors, we assessed the role of de novo mutations in ALS by sequencing the exomes of 47 ALS patients and both of their unaffected parents (n = 141 exomes). We found that amino acid-altering de novo mutations were enriched in genes encoding chromatin regulators, including the neuronal chromatin remodeling complex (nBAF) component SS18L1 (also known as CREST). CREST mutations inhibited activity-dependent neurite outgrowth in primary neurons, and CREST associated with the ALS protein FUS. These findings expand our understanding of the ALS genetic landscape and provide a resource for future studies into the pathogenic mechanisms contributing to sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Predisposição Genética para Doença/genética , Mutação/genética , Proteínas Nucleares/genética , Transativadores/genética , Adulto , Animais , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/genética , Dendritos/metabolismo , Embrião de Mamíferos , Saúde da Família , Feminino , Genótipo , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Proteína FUS de Ligação a RNA/genética , Adulto Jovem
7.
Curr Top Dev Biol ; 97: 1-19, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22074600

RESUMO

Myelin is a vertebrate adaptation that allows for the rapid propagation of action potentials along axons. Specialized glial cells-oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS)-form myelin by repeatedly wrapping axon segments. Debilitating diseases result from the disruption of myelin, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. The process of myelination involves extensive communication between glial cells and the associated neurons. The past few years have seen important progress in understanding the molecular basis of the signals that coordinate the development of these fascinating cells. This review highlights recent advances in myelination deriving from studies in the zebrafish model system, with a primary focus on the PNS. While Neuregulin1-ErbB signaling has long been known to play important roles in peripheral myelin development, work in zebrafish has elucidated its roles in Schwann cell migration and radial sorting of axons in vivo. Forward genetic screens in zebrafish have also uncovered new genes required for development of myelinated axons, including gpr126, which encodes a G-protein coupled receptor required for Schwann cells to progress beyond the promyelinating stage. In addition, work in zebrafish uncovered new roles for Schwann cells themselves, including in regulating the boundary between the PNS and CNS and positioning a nerve after its initial outgrowth.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Bainha de Mielina , Neuregulina-1 , Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/genética , Proteínas de Peixe-Zebra , Animais , Axônios/metabolismo , Movimento Celular/genética , Sistema Nervoso Central/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Genes erbB-2/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Animais , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Organogênese/genética , Doenças do Sistema Nervoso Periférico/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(19): 8009-14, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518878

RESUMO

During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron-glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and ßII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and ßII spectrin in Schwann cells integrate the neuron-glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination.


Assuntos
Bainha de Mielina/fisiologia , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Espectrina/fisiologia , Actinas/antagonistas & inibidores , Actinas/fisiologia , Animais , Sequência de Bases , Polaridade Celular , Citoesqueleto/fisiologia , Técnicas de Silenciamento de Genes , Mutação , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Nervo Isquiático/citologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Espectrina/antagonistas & inibidores , Espectrina/deficiência , Espectrina/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
9.
Glia ; 59(7): 1047-55, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21491500

RESUMO

In the peripheral nervous system, Schwann cells make myelin, a specialized sheath that is essential for rapid axonal conduction of action potentials. Immature Schwann cells initially interact with many axons, but, through a process termed radial sorting, eventually interact with one segment of a single axon as promyelinating Schwann cells. Previous studies have identified genes that are required for Schwann cell process extension and proliferation during radial sorting. Previous analyses also show that ErbB signaling is required for Schwann cell proliferation, myelination, radial sorting, and the proper formation of unmyelinated Remak bundles. Because ErbB signaling and Schwann cell proliferation are both required during radial sorting, we sought to determine if the primary function of ErbB signaling in this process is to regulate Schwann cell proliferation or if ErbB signaling also controls other aspects of radial sorting. To address this question, we applied small molecule inhibitors in vivo in zebrafish to independently block ErbB signaling and proliferation. Ultrastructural analysis of treated animals revealed that both ErbB signaling and Schwann cell proliferation are required for radial sorting in vivo. ErbB signaling, however, is required for Schwann cell process extension, while Schwann cell proliferation is not. These results provide in vivo evidence that ErbB signaling plays a direct role in process extension during radial sorting, in addition to its role in regulating Schwann cell proliferation.


Assuntos
Proliferação de Células , Proteínas Oncogênicas v-erbB/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Laranja de Acridina , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Axônios/metabolismo , Contagem de Células , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Development ; 137(21): 3643-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20876648

RESUMO

Although much is known about the initial construction of the peripheral nervous system (PNS), less well understood are the processes that maintain the position and connections of nerves during postembryonic growth. Here, we show that the posterior lateral line nerve in zebrafish initially grows in the epidermis and then rapidly transitions across the epidermal basement membrane into the subepidermal space. Our experiments indicate that Schwann cells, which myelinate axons in the PNS, are required to reposition the nerve. In mutants lacking Schwann cells, the nerve is mislocalized and the axons remain in the epidermis. Transplanting wild-type Schwann cells into these mutants rescues the position of the nerve. Analysis of chimeric embryos suggests that the process of nerve relocalization involves two discrete steps - the degradation and recreation of the epidermal basement membrane. Although the outgrowth of axons is normal in mutants lacking Schwann cells, the nerve becomes severely disorganized at later stages. In wild-type embryos, exclusion of the nerve from the epidermis isolates axons from migration of their targets (sensory neuromasts) within the epidermis. Without Schwann cells, axons remain within the epidermis and are dragged along with the migrating neuromasts. Our analysis of the posterior lateral line system defines a new process in which Schwann cells relocate a nerve beneath the epidermal basement membrane to insulate axons from the postembryonic remodeling of their targets.


Assuntos
Movimento Celular/fisiologia , Epiderme/crescimento & desenvolvimento , Epiderme/inervação , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Animais , Animais Geneticamente Modificados , Membrana Basal/inervação , Membrana Basal/fisiologia , Embrião não Mamífero , Modelos Biológicos , Regeneração Nervosa/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
11.
J Neurosci ; 29(46): 14408-14, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19923275

RESUMO

The clustering of voltage-gated sodium channels at the axon initial segment (AIS) and nodes of Ranvier is essential for the initiation and propagation of action potentials in myelinated axons. Sodium channels localize to the AIS through an axon-intrinsic mechanism driven by ankyrin G, while clustering at the nodes requires cues from myelinating glia that interact with axonal neurofascin186 (Sherman et al., 2005; Dzhashiashvili et al., 2007; Yang et al., 2007). Here, we report that in zebrafish mutants lacking Schwann cells in peripheral nerves (erbb2, erbb3, and sox10/colorless), axons form numerous aberrant sodium channel clusters throughout their length. Morpholino knockdown of ankyrin G, but not neurofascin, reduces the number of sodium channel clusters in Schwann cell-deficient mutants, suggesting that these aberrant clusters form by an axon-intrinsic mechanism. We also find that gpr126 mutants, in which Schwann cells are arrested at the promyelinating stage (Monk et al., 2009), are deficient in the clustering of neurofascin at the nodes of Ranvier. When Schwann cell migration in gpr126 mutants is blocked, there is an increase in the number of neurofascin clusters in peripheral axons. Our results suggest that Schwann cells inhibit the ability of ankyrin G to cluster sodium channels at ectopic locations, restricting its activity to the AIS and nodes of Ranvier.


Assuntos
Axônios/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/fisiologia , Células de Schwann/metabolismo , Canais de Sódio/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/patologia , Axônios/ultraestrutura , Proteínas do Tecido Nervoso/ultraestrutura , Inibição Neural/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Canais de Sódio/genética , Canais de Sódio/ultraestrutura , Peixe-Zebra , Proteínas de Peixe-Zebra/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...