Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 73(24): 7882-90, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17965214

RESUMO

The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803(T), known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [(13)C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(omega-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/metabolismo , Sulfatos/metabolismo , Álcoois/metabolismo , Anaerobiose , Bicarbonatos/metabolismo , Radioisótopos de Carbono/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Ácidos Graxos/análise , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução
2.
Appl Environ Microbiol ; 71(7): 3458-67, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16000749

RESUMO

The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/mass spectrometry allowed us to identify saturated 2-, 4-, 6-, and 8-methyl- and monounsaturated 6-methyl-branched fatty acids, with chain lengths that specifically correlated with those of the alkane. Growth of D. aliphaticivorans on perdeuterated hexadecane demonstrated that those methyl-branched fatty acids were directly derived from the substrate. In addition, cultures on pentadecane and hexadecane produced (1-methyltetradecyl)succinate and (1-methylpentadecyl)succinate, respectively. These results indicate that D. aliphaticivorans strain CV2803T oxidizes n-alkanes into fatty acids anaerobically, via the addition of fumarate at C-2. Based on our observations and on literature data, a pathway for anaerobic n-alkane metabolism by D. aliphaticivorans is proposed. This involves the transformation of the initial alkylsuccinate into a 4-methyl-branched fatty acid which, in addition to catabolic reactions, can alternatively undergo chain elongation and desaturation to form storage fatty acids.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo , Anaerobiose , Biodegradação Ambiental , Meios de Cultura , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/metabolismo , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação
3.
Phytochemistry ; 65(22): 3049-55, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15504440

RESUMO

The hydrocarbon composition of the marine diatom Pleurosigma strigosum isolated from coastal Mediterranean sediments is described. A suite of five C(25) highly branched isoprenoid (HBI) alkenes with 2-5 double bonds were detected together with n-C(21:4) and n-C(21:5) alkenes and squalene. The analysis by (1)H and (13)C NMR spectroscopy of two isolated HBI alkenes allowed the structural identification of a novel C(25) HBI triene (2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadeca-5E,13-diene) and the first identification in diatom cells of 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5E-ene, an HBI previously detected in marine sediments and particulate matter. The other minor C(25) HBIs detected were a tetraene and a pentaene that have been previously identified in other diatoms from the genera Haslea and Rhizosolenia, and one other C(25) tetraene that could not be structurally identified. The structures of the HBI alkenes of P. strigosum were compared with those of C(25) homologues previously identified in three other Pleurosigma sp. (Pleurosigma intermedium, Pleurosigma planktonicum and Pleurosigma sp.). Unlike most structures previously reported, none of the HBI alkenes produced by P. strigosum showed an unsaturation at C7-C20, or E/Z isomerism of the trisubstituted double bond at C9-C10 (whenever present).


Assuntos
Diatomáceas/química , Terpenos/análise , Meio Ambiente , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Estrutura Molecular
4.
Phytochemistry ; 63(6): 693-8, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12842142

RESUMO

The hydrocarbon fraction of leaf waxes of three halophytes of the Chenopodiaceae common to Mediterranean salt marshes (Suaeda vera, Sarcocornia fruticosa and Halimione portulacoides) revealed the presence of a minor series of odd and even chains 1-chloro-n-alkanes ranging from C(19) to C(29). The identification of these new chlorinated plant constituents was based on a combination of mass spectrometry data with selective chlorine detection (CPG-AED) and was confirmed by comparison with authentic standards. The qualitative and quantitative distributions of these 1-chloro-n-alkanes varied inter-specifically. Homologues with an odd carbon-chain were predominant in all species but maximised at C(25) and C(27) in S. vera and S. fruticosa, and at C(27) and C(29) in H. portulacoides. Remarkably, 1-chloro-nonacosane was an abundant homologue only in this latter species. Leaves of S. vera contained 4 to 7 times more of total chloroalkanes than leaves of the other two species. These compounds accounted for 10, 4 and 1% of the hydrocarbon fraction of leaf waxes of S. vera, S. fruticosa and H. portulacoides, respectively. Attempts to link the occurrence of these chloroalkanes with other classes of leaf waxes (n-alkenes, n-aldehydes and n-alcohols) did not allowed a clear precursor-product relationship to be established. The biological functions as well as the mode of synthesis of alkylchlorides in (halophyte) plants remain unknown but undoubtedly deserve further attention.


Assuntos
Alcanos/análise , Alcanos/química , Chenopodiaceae/química , Folhas de Planta/química , Ceras/química , Alcanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...