Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 32(10): 1291-1302, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31216220

RESUMO

The genomes of all eukaryotic organisms, from small unicellular yeasts to humans, include members of the protein arginine methyltransferase (PRMT) family. These enzymes affect gene transcription, cellular signaling, and function through the posttranslational methylation of arginine residues. Mis-regulation of PRMTs results in serious developmental defects, disease, or death, illustrating the importance of these enzymes to cellular processes. Plant genomes encode almost the full complement of PRMTs found in other higher organisms, plus an additional PRMT found uniquely in plants, PRMT10. Here, we investigate the role of these highly conserved PRMTs in a process that is unique to perennial plants-the development of symbiosis with ectomycorrhizal fungi. We show that PRMT expression and arginine methylation is altered in the roots of the model tree Eucalyptus grandis by the presence of its ectomycorrhizal fungal symbiont Pisolithus albus. Further, using transgenic modifications, we demonstrate that E. grandis-encoded PRMT1 and PRMT10 have important but opposing effects in promoting this symbiosis. In particular, the plant-specific EgPRMT10 has a potential role in the expression of plant hormone pathways during the colonization process and its overexpression reduces fungal colonization success.


Assuntos
Eucalyptus , Regulação da Expressão Gênica de Plantas , Micorrizas , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Simbiose , Basidiomycota/fisiologia , Humanos , Micorrizas/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Simbiose/fisiologia
2.
Cell Div ; 13: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568320

RESUMO

Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein-protein interactions, RNA splicing and transport. The enzymes responsible for arginine methylation, protein arginine methyltransferases (PRMTs), have been shown to methylate or associate with important regulatory proteins of the cell cycle and DNA damage repair pathways, such as cyclin D1, p53, p21 and the retinoblastoma protein. Overexpression of PRMTs resulting in aberrant methylation patterns in cancers often correlates with poor recovery prognosis. This indicates that protein arginine methylation is also an important regulator of the cell cycle, and consequently a target for cancer regulation. The effect of protein arginine methylation on the cell cycle and how this emerging key player of cell cycle regulation may be used in therapeutic strategies for cancer are the focus of this review.

3.
BMC Plant Biol ; 17(1): 62, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279165

RESUMO

BACKGROUND: Methylation of proteins at arginine residues, catalysed by members of the protein arginine methyltransferase (PRMT) family, is crucial for the regulation of gene transcription and for protein function in eukaryotic organisms. Inhibition of the activity of PRMTs in annual model plants has demonstrated wide-ranging involvement of PRMTs in key plant developmental processes, however, PRMTs have not been characterised or studied in long-lived tree species. RESULTS: Taking advantage of the recently available genome for Eucalyptus grandis, we demonstrate that most of the major plant PRMTs are conserved in E. grandis as compared to annual plants and that they are expressed in all major plant tissues. Proteomic and transcriptomic analysis in roots suggest that the PRMTs of E. grandis control a number of regulatory proteins and genes related to signalling during cellular/root growth and morphogenesis. We demonstrate here, using chemical inhibition of methylation and transgenic approaches, that plant type I PRMTs are necessary for normal root growth and branching in E. grandis. We further show that EgPRMT1 has a key role in root hair initiation and elongation and is involved in the methylation of ß-tubulin, a key protein in cytoskeleton formation. CONCLUSIONS: Together, our data demonstrate that PRMTs encoded by E. grandis methylate a number of key proteins and alter the transcription of a variety of genes involved in developmental processes. Appropriate levels of expression of type I PRMTs are necessary for the proper growth and development of E. grandis roots.


Assuntos
Eucalyptus/enzimologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Eucalyptus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Metilação , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Estirenos/farmacologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...