Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(22): 221601, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315422

RESUMO

Within general relativity, the unique stationary solution of an isolated black hole is the Kerr spacetime, which has a peculiar multipolar structure depending only on its mass and spin. We develop a general method to extract the multipole moments of arbitrary stationary spacetimes and apply it to a large family of horizonless microstate geometries. The latter can break the axial and equatorial symmetry of the Kerr metric and have a much richer multipolar structure, which provides a portal to constrain fuzzball models phenomenologically. We find numerical evidence that all multipole moments are typically larger (in absolute value) than those of a Kerr black hole with the same mass and spin. Current measurements of the quadrupole moment of black-hole candidates could place only mild constraints on fuzzballs, while future gravitational-wave detections of extreme mass-ratio inspirals with the space mission LISA will improve these bounds by orders of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA