Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(10): 5182-5194, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850893

RESUMO

Tertiary sequence motifs encode interactions between RNA helices that create the three-dimensional structures of ribosomal subunits. A Right Angle motif at the junction between 16S helices 5 and 6 (J5/6) is universally conserved amongst small subunit rRNAs and forms a stable right angle in minimal RNAs. J5/6 does not form a right angle in the mature ribosome, suggesting that this motif encodes a metastable structure needed for ribosome biogenesis. In this study, J5/6 mutations block 30S ribosome assembly and 16S maturation in Escherichia coli. Folding assays and in-cell X-ray footprinting showed that J5/6 mutations favor an assembly intermediate of the 16S 5' domain and prevent formation of the central pseudoknot. Quantitative mass spectrometry revealed that mutant pre-30S ribosomes lack protein uS12 and are depleted in proteins uS5 and uS2. Together, these results show that impaired folding of the J5/6 right angle prevents the establishment of inter-domain interactions, resulting in global collapse of the 30S structure observed in electron micrographs of mutant pre-30S ribosomes. We propose that the J5/6 motif is part of a spine of RNA helices that switch conformation at distinct stages of assembly, linking peripheral domains with the 30S active site to ensure the integrity of 30S biogenesis.


Assuntos
Escherichia coli/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Espectrometria de Massas/métodos , Mutação , Conformação de Ácido Nucleico , RNA Ribossômico 16S/genética , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Raios X
2.
Curr Protoc Nucleic Acid Chem ; 73(1): e52, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927103

RESUMO

RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc.


Assuntos
Radical Hidroxila/química , Conformação de Ácido Nucleico , RNA/química , Síncrotrons , Fatores de Tempo , Raios X
3.
Nat Commun ; 8(1): 492, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887451

RESUMO

Assembly of 30S ribosomes involves the hierarchical addition of ribosomal proteins that progressively stabilize the folded 16S rRNA. Here, we use three-color single molecule FRET to show how combinations of ribosomal proteins uS4, uS17 and bS20 in the 16S 5' domain enable the recruitment of protein bS16, the next protein to join the complex. Analysis of real-time bS16 binding events shows that bS16 binds both native and non-native forms of the rRNA. The native rRNA conformation is increasingly favored after bS16 binds, explaining how bS16 drives later steps of 30S assembly. Chemical footprinting and molecular dynamics simulations show that each ribosomal protein switches the 16S conformation and dampens fluctuations at the interface between rRNA subdomains where bS16 binds. The results suggest that specific protein-induced changes in the rRNA dynamics underlie the hierarchy of 30S assembly and simplify the search for the native ribosome structure.Ribosomes assemble through the hierarchical addition of proteins to a ribosomal RNA scaffold. Here the authors use three-color single-molecule FRET to show how the dynamics of the rRNA dictate the order in which multiple proteins assemble on the 5' domain of the E. coli 16S rRNA.


Assuntos
RNA Ribossômico 16S/química , Ribossomos/química , Simulação por Computador , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/química
4.
Methods ; 103: 49-56, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016143

RESUMO

The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo.


Assuntos
Radical Hidroxila/química , RNA Bacteriano/ultraestrutura , RNA Ribossômico/ultraestrutura , Ribossomos/ultraestrutura , Ésteres do Ácido Sulfúrico/química , Técnicas de Cultura de Células , Escherichia coli , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Ribossômico/química , Ribossomos/química , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...