Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Ther ; 21(9): 799-805, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594830

RESUMO

Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.


Assuntos
Polipose Adenomatosa do Colo/genética , Genes Supressores de Tumor , Receptores de Enterotoxina/genética , Polipose Adenomatosa do Colo/patologia , Animais , Transformação Celular Neoplásica , Inativação Gênica , Humanos , Masculino , Camundongos
2.
Cancer Res ; 77(18): 5095-5106, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916678

RESUMO

High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR.


Assuntos
Raios gama/efeitos adversos , Trato Gastrointestinal/efeitos da radiação , Síndrome do Intestino Irritável/prevenção & controle , Lesões Experimentais por Radiação/prevenção & controle , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Feminino , Hormônios Gastrointestinais/metabolismo , Humanos , Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/etiologia , Linfoma/enzimologia , Linfoma/patologia , Linfoma/radioterapia , Masculino , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Melanoma Experimental/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Natriuréticos/metabolismo , Comunicação Parácrina/efeitos da radiação , Lesões Experimentais por Radiação/enzimologia , Lesões Experimentais por Radiação/etiologia , Receptores de Enterotoxina , Transdução de Sinais/efeitos da radiação , Células Tumorais Cultivadas
3.
Expert Rev Clin Pharmacol ; 10(5): 549-557, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28162021

RESUMO

INTRODUCTION: Colorectal cancer remains the second leading cause of cancer death in the United States, and new strategies to prevent, detect, and treat the disease are needed. The receptor, guanylate cyclase C (GUCY2C), a tumor suppressor expressed by the intestinal epithelium, has emerged as a promising target. Areas covered: This review outlines the role of GUCY2C in tumorigenesis, and steps to translate GUCY2C-targeting schemes to the clinic. Endogenous GUCY2C-activating ligands disappear early in tumorigenesis, silencing its signaling axis and enabling transformation. Pre-clinical models support GUCY2C ligand supplementation as a novel disease prevention paradigm. With the recent FDA approval of the GUCY2C ligand, linaclotide, and two more synthetic ligands in the pipeline, this strategy can be tested in human trials. In addition to primary tumor prevention, we also review immunotherapies targeting GUCY2C expressed by metastatic lesions, and platforms using GUCY2C as a biomarker for detection and patient staging. Expert commentary: Results of the first GUCY2C targeting schemes in patients will become available in the coming years. The identification of GUCY2C ligand loss as a requirement for colorectal tumorigenesis has the potential to change the treatment paradigm from an irreversible disease of genetic mutation, to a treatable disease of ligand insufficiency.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Terapia de Alvo Molecular , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Desenho de Fármacos , Humanos , Imunoterapia/métodos , Ligantes , Estadiamento de Neoplasias , Receptores de Enterotoxina
4.
Infect Immun ; 84(10): 3083-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481254

RESUMO

Enterotoxigenic Escherichia coli (ETEC) causes ∼20% of the acute infectious diarrhea (AID) episodes worldwide, often by producing heat-stable enterotoxins (STs), which are peptides structurally homologous to paracrine hormones of the intestinal guanylate cyclase C (GUCY2C) receptor. While molecular mechanisms mediating ST-induced intestinal secretion have been defined, advancements in therapeutics have been hampered for decades by the paucity of disease models that integrate molecular and functional endpoints amenable to high-throughput screening. Here, we reveal that mouse and human intestinal enteroids in three-dimensional ex vivo cultures express the components of the GUCY2C secretory signaling axis. ST and its structural analog, linaclotide, an FDA-approved oral secretagog, induced fluid accumulation quantified simultaneously in scores of enteroid lumens, recapitulating ETEC-induced intestinal secretion. Enteroid secretion depended on canonical molecular signaling events responsible for ETEC-induced diarrhea, including cyclic GMP (cGMP) produced by GUCY2C, activation of cGMP-dependent protein kinase (PKG), and opening of the cystic fibrosis transmembrane conductance regulator (CFTR). Importantly, pharmacological inhibition of CFTR abrogated enteroid fluid secretion, providing proof of concept for the utility of this model to screen antidiarrheal agents. Intestinal enteroids offer a unique model, integrating the GUCY2C signaling axis and luminal fluid secretion, to explore the pathophysiology of, and develop platforms for, high-throughput drug screening to identify novel compounds to prevent and treat ETEC diarrheal disease.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigênica/fisiologia , Enterotoxinas/fisiologia , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Análise de Variância , Animais , GMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/metabolismo , Modelos Animais de Doenças , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Enterotoxina , Transdução de Sinais/fisiologia
5.
Mol Pharm ; 13(2): 357-368, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702793

RESUMO

Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatment. However, there have been no systematic studies comparing different endocytic routes in LSDs. Here, we used genetic and pharmacological models of four LSDs (type A Niemann-Pick, type C Niemann-Pick, Fabry, and Gaucher diseases) and evaluated the pinocytic and receptor-mediated activity of the clathrin-, caveolae-, and macropinocytic routes. Bulk pinocytosis was diminished in all diseases, suggesting a generic endocytic alteration linked to lysosomal storage. Fluid-phase (dextran) and ligand (transferrin) uptake via the clathrin route were lower for all LSDs. Fluid-phase and ligand (cholera toxin B) uptake via the caveolar route were both affected but less acutely in Fabry or Gaucher diseases. Epidermal growth factor-induced macropinocytosis was altered in Niemann-Pick cells but not other LSDs. Intracellular trafficking of ligands was also distorted in LSD versus wild-type cells. The extent of these endocytic alterations paralleled the level of cholesterol storage in disease cell lines. Confirming this, pharmacological induction of cholesterol storage in wild-type cells disrupted endocytosis, and model therapeutics restored uptake in proportion to their efficacy in attenuating storage. This suggests a proportional and reversible relationship between endocytosis and lipid (cholesterol) storage. By analogy, the accumulation of biological material in other diseases, or foreign material from drugs or their carriers, may cause similar deficits, warranting further investigation.


Assuntos
Colesterol/metabolismo , Endocitose/fisiologia , Doença de Gaucher/metabolismo , Lipídeos/química , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Doenças de Niemann-Pick/metabolismo , Transporte Biológico , Clatrina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Gaucher/patologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Microscopia Eletrônica de Varredura , Doenças de Niemann-Pick/patologia , Pinocitose/fisiologia , Pele/metabolismo , Pele/patologia
6.
Mol Pharm ; 12(5): 1366-76, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25849869

RESUMO

Pharmaceutical intervention often requires therapeutics and/or their carriers to enter cells via endocytosis. Therefore, endocytic aberrancies resulting from disease represent a key, yet often overlooked, parameter in designing therapeutic strategies. In the case of lysosomal storage diseases (LSDs), characterized by lysosomal accumulation of undegraded substances, common clinical interventions rely on endocytosis of recombinant enzymes. However, the lysosomal defect in these diseases can affect endocytosis, as we recently demonstrated for clathrin-mediated uptake in patient fibroblasts with type A Niemann-Pick disease (NPD), a disorder characterized by acid sphingomylinase (ASM) deficiency and subsequent sphingomyelin storage. Using similar cells, we have examined if this is also the case for clathrin-independent pathways, including caveolae-mediated endocytosis and macropinocytosis. We observed impaired caveolin-1 enrichment at ligand-binding sites in NPD relative to wild type fibroblasts, corresponding with altered uptake of ligands and fluid-phase markers by both pathways. Similarly, aberrant lysosomal storage of sphingomyelin induced by pharmacological means also diminished uptake. Partial degradation of the lysosomal storage by untargeted recombinant ASM led to partial uptake enhancement, whereas both parameters were restored to wild type levels by ASM delivery using model polymer nanocarriers specifically targeted to intercellular adhesion molecule-1. Carriers also restored caveolin-1 enrichment at ligand-binding sites and uptake through the caveolar and macropinocytic routes. These results demonstrate a link between lysosomal storage in NPD and alterations in clathrin-independent endocytosis, which could apply to other LSDs. Hence, this study shall guide the design of therapeutic approaches using viable endocytic pathways.


Assuntos
Caveolina 1/metabolismo , Endocitose/fisiologia , Molécula 1 de Adesão Intercelular/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Células Cultivadas , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Microscopia de Fluorescência
7.
Mol Pharm ; 11(8): 2887-95, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24949999

RESUMO

Drugs often use endocytosis to achieve intracellular delivery, either by passive uptake from the extracellular fluid or by active targeting of cell surface features such as endocytic receptors. An example is enzyme replacement therapy, a clinically practiced treatment for several lysosomal storage diseases where glycosylated recombinant enzymes naturally target the mannose-6-phosphate receptor and are internalized by clathrin mediated endocytosis (CME). However, lysosomal substrate accumulation, a hallmark of these diseases, has been indirectly linked to aberrant endocytic activity. These effects are poorly understood, creating an obstacle to therapeutic efficiency. Here we explored endocytic activity in fibroblasts from patients with type A Niemann-Pick disease, a lysosomal storage disease characterized by acid sphingomyelinase (ASM) deficiency. The uptake of fluid phase markers and clathrin-associated ligands, formation of endocytic structures, and recruitment of intracellular clathrin to ligand binding sites were all altered, demonstrating aberrant CME in these cells. Model polymer nanocarriers targeted to intercellular adhesion molecule-1 (ICAM-1), which are internalized by a clathrin-independent route, enhanced the intracellular delivery of recombinant ASM more than 10-fold compared to free enzyme. This strategy reduced substrate accumulation and restored clathrin endocytic activity to wild-type levels. There appears to be a relationship between lysosomal storage and diminished CME, and bypassing this pathway by targeting ICAM-1 may enhance future therapies for lysosomal storage diseases.


Assuntos
Clatrina/química , Endocitose/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Doenças de Niemann-Pick/metabolismo , Animais , Anticorpos Monoclonais/química , Sítios de Ligação , Membrana Celular/metabolismo , Portadores de Fármacos/química , Terapia de Reposição de Enzimas , Fibroblastos/metabolismo , Humanos , Ligantes , Lipídeos/química , Lisossomos/química , Lisossomos/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , Nanomedicina/métodos , Nanopartículas/química , Fenótipo , Pinocitose , Polímeros/química , Proteínas Recombinantes/química , Esfingomielina Fosfodiesterase/química
8.
Pharm Res ; 31(7): 1855-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24558007

RESUMO

PURPOSE: The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transport drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule -1 (ICAM-1), to transport drug carriers into and across BBB models. METHODS: Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. RESULTS: ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. CONCLUSIONS: CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Anticorpos/imunologia , Transporte Biológico , Barreira Hematoencefálica/citologia , Linhagem Celular , Portadores de Fármacos/química , Humanos , Molécula 1 de Adesão Intercelular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...