Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 146(22): 15488-15495, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776284

RESUMO

Recently, many topological materials have been discovered as promising electrocatalysts in chemical conversion processes and energy storage. However, it remains unclear how the topological electronic states specifically modulate the catalytic reaction. Here, the two-dimensional metal phthalocyanine-based covalent organic framework (MPc-COF) is studied by ab initio thermodynamic calculations to clearly reveal the promotional effect on the electrochemical hydrogen evolution reaction (HER) induced by topological gapless bands (TGBs). We find that the prehydrogenated (and fluorinated) H4CdPc-COF(F) shows the best HER performance, with 0.016 V (near zero) overpotential. By tracking changes to the electronic structure and free energy as the prehydrogenation and HER processes occur, we are able to separately attribute the high HER efficiency in part due to the increase of the electron bath by donating electrons to the conjugated π bonds and also to the existence of TGBs. Specifically, the significant catalytic promotion by TGBs is proven to decrease the free energy by 0.218 eV to near zero. When the TGBs are destroyed, e.g., by replacing N with P and opening a band gap, the HER efficiency is reduced. This study opens avenues for deterministically harnessing topological band features to improve electrocatalysis.

3.
Nano Lett ; 24(18): 5436-5443, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656103

RESUMO

The ultrahigh surface area of two-dimensional materials can drive multimodal coupling between optical, electrical, and mechanical properties that leads to emergent dynamical responses not possible in three-dimensional systems. We observed that optical excitation of the WS2 monolayer above the exciton energy creates symmetrically patterned mechanical protrusions which can be controlled by laser intensity and wavelength. This observed photostrictive behavior is attributed to lattice expansion due to the formation of polarons, which are charge carriers dressed by lattice vibrations. Scanning Kelvin probe force microscopy measurements and density functional theory calculations reveal unconventional charge transport properties such as the spatially and optical intensity-dependent conversion in the WS2 monolayer from apparent n- to p-type and the subsequent formation of effective p-n junctions at the boundaries between regions with different defect densities. The strong opto-electrical-mechanical coupling in the WS2 monolayer reveals previously unexplored properties, which can lead to new applications in optically driven ultrathin microactuators.

4.
Nano Lett ; 24(7): 2210-2217, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320301

RESUMO

The Z4 symmetry indicator is widely used to classify topological materials hosting inversion symmetry. We find orthorhombic Li2AuBi in space group Cmcm is a topological insulator with Z4=1 under no strain via first-principles calculations. Due to small band gaps in the kz = 0 plane, the band inversions can be selectively induced by moderate external strains to realize phases covering all values of Z4 = 1, 2, 3, and 0. Detailed Z4 phase diagrams are plotted under various moderate strains. The (001) surface states and their associated Fermi surfaces and spin textures are calculated. The topological surface states have different connectivities and different spin textures for the four different Z4 phases. The tunability of topological surface states via moderate strain suggests Li2AuBi as an attractive topological material for device applications.

5.
Nat Mater ; 23(1): 88-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985838

RESUMO

Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.

6.
Adv Mater ; 36(14): e2309302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145558

RESUMO

The inability to process many covalent organic frameworks (COFs) as thin films plagues their widespread utilization. Herein, a vapor-phase pathway for the bottom-up synthesis of a class of porphyrin-based COFs is presented. This approach allows integrating electrocatalysts made of metal-ion-containing COFs into the electrodes' architectures in a single-step synthesis and deposition. By precisely controlling the metal sites at the atomic level, remarkable electrocatalytic performance is achieved, resulting in unprecedentedly high mass activity values. How the choice of metal atoms, i.e., cobalt and copper, can determine the catalytic activities of POR-COFs is demonstrated. The theoretical data proves that the Cu site is highly active for nitrate conversion to ammonia on the synthesized COFs.

7.
J Am Chem Soc ; 145(49): 26765-26773, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38049385

RESUMO

Attaining controllable molecular motion at the nanoscale can be beneficial for multiple reasons, spanning from optoelectronics to catalysis. Here we study the movement of a two-legged molecular walker by modeling the migration of a phenyl aziridine ring on curved graphene. We find that directional ring migration can be attained on graphene in the cases of both 1D (wrinkled/rippled) and 2D (bubble-shaped) curvature. Using a descriptor approach based on graphene's frontier orbital orientation, we can understand the changes in binding energy of the ring as it translates across different sites with variable curvature and the kinetic barriers associated with ring migration. Additionally, we show that the extent of covalent bonding between graphene and the molecule at different sites directly controls the binding energy gradient, propelling molecular migration. Importantly, one can envision such walkers as carriers of charge and disruptors of local bonding. This study enables a new way to tune the electronic structure of two-dimensional materials for a range of applications.

8.
ACS Nano ; 17(23): 23944-23954, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015799

RESUMO

Phase identification in HfO2-based thin films is a prerequisite to understanding the mechanisms stabilizing the ferroelectric phase in these materials, which hold great promise in next-generation nonvolatile memory and computing technology. While grazing-incidence X-ray diffraction is commonly employed for this purpose, it has difficulty unambiguously differentiating between the ferroelectric phase and other metastable phases that may exist due to similarities in the d-spacings, their low intensities, and the overlapping of reflections. Infrared signatures provide an alternative route. However, their use in phase identification remains limited because phase control has overwhelmingly been accomplished via substituents, thereby convoluting infrared signatures between the substituents and the phase changes that they induce. Herein, we report the infrared optical responses of three undoped hafnium oxide films where annealing conditions have been used to create films consisting primarily of the ferroelectric polar orthorhombic Pca21, antipolar orthorhombic Pbca, and monoclinic P21/c phases, as was confirmed via transmission electron microscopy (TEM), UV-visible optical properties, and electrical property measurements. Vibrational signatures acquired from synchrotron nano-Fourier transform infrared spectroscopy (nano-FTIR) are shown to be capable of differentiating between the phases in a nondestructive, rapid, and nanoscale manner. The utility of nano-FTIR is illustrated for a film exhibiting an antiferroelectric polarization response. In this sample, it is proven that this behavior results from the Pbca phase rather than the often-cited tetragonal phase. By demonstrating that IR spectroscopy can unambiguously distinguish phases in this material, this work establishes a tool needed to isolate the factors dictating the ferroelectric phase stability in HfO2-based materials.

9.
Sci Adv ; 9(33): eadg4417, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585532

RESUMO

Layered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations. This approach reveals the structural dynamics in and out of equilibrium and provides unexpected observables that differentiate single- and double-layered perovskites. While no distinct vibrational coherence is observed in double-layered perovskites, an off-resonant terahertz pulse can drive a long-lived coherent phonon mode in the single-layered system. This difference highlights the dramatic change in the lattice environment as the dimension is reduced, and the findings pave the way for ultrafast structural engineering and high-speed optical modulators based on layered perovskites.

10.
Nat Mater ; 22(9): 1128-1135, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500959

RESUMO

The niobium oxide polymorph T-Nb2O5 has been extensively investigated in its bulk form especially for applications in fast-charging batteries and electrochemical (pseudo)capacitors. Its crystal structure, which has two-dimensional (2D) layers with very low steric hindrance, allows for fast Li-ion migration. However, since its discovery in 1941, the growth of single-crystalline thin films and its electronic applications have not yet been realized, probably due to its large orthorhombic unit cell along with the existence of many polymorphs. Here we demonstrate the epitaxial growth of single-crystalline T-Nb2O5 thin films, critically with the ionic transport channels oriented perpendicular to the film's surface. These vertical 2D channels enable fast Li-ion migration, which we show gives rise to a colossal insulator-metal transition, where the resistivity drops by 11 orders of magnitude due to the population of the initially empty Nb 4d0 states by electrons. Moreover, we reveal multiple unexplored phase transitions with distinct crystal and electronic structures over a wide range of Li-ion concentrations by comprehensive in situ experiments and theoretical calculations, which allow for the reversible and repeatable manipulation of these phases and their distinct electronic properties. This work paves the way for the exploration of novel thin films with ionic channels and their potential applications.

11.
Adv Mater ; 35(51): e2302012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37433562

RESUMO

Complex-oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit-cell-precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor-like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3 )n /(SrTiO3 )n (n = 4-20 unit cells) superlattices. Dielectric studies and subsequent Vogel-Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller period n. Bond-valence molecular-dynamics simulations predict the relaxor-like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete-wavelet transforms in shorter-period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer-period superlattices (n = 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor-like behavior which may expand the ability to control desired properties in these complex systems.

12.
J Chem Theory Comput ; 19(13): 3889-3899, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37384777

RESUMO

The real-space pseudopotential approach is a well-known method for large-scale density functional theory (DFT) calculations. One of its main limitations, however, is the introduction of errors associated with the positioning of the underlying real-space grid, a phenomenon usually known as the "egg-box" effect. The effect can be controlled by using a finer grid, but this raises the cost of the calculations or even undermines their feasibility altogether. Therefore, there is ongoing interest in the reduction of the effect per a given real-space grid. Here, we present a finite difference interpolation of electron orbitals as a means of exploiting the high resolution of the pseudopotential to reduce egg-box effects systematically. We implement the method in PARSEC, a finite difference real-space pseudopotential DFT code, and demonstrate error mitigation and improved convergence at a low additional computational cost.

13.
Nat Commun ; 14(1): 2341, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095113

RESUMO

Solution growth of single-crystal ferroelectric oxide films has long been pursued for the low-cost development of high-performance electronic and optoelectronic devices. However, the established principles of vapor-phase epitaxy cannot be directly applied to solution epitaxy, as the interactions between the substrates and the grown materials in solution are quite different. Here, we report the successful epitaxy of single-domain ferroelectric oxide films on Nb-doped SrTiO3 single-crystal substrates by solution reaction at a low temperature of ~200 oC. The epitaxy is mainly driven by an electronic polarization screening effect at the interface between the substrates and the as-grown ferroelectric oxide films, which is realized by the electrons from the doped substrates. Atomic-level characterization reveals a nontrivial polarization gradient throughout the films in a long range up to ~500 nm because of a possible structural transition from the monoclinic phase to the tetragonal phase. This polarization gradient generates an extremely high photovoltaic short-circuit current density of ~2.153 mA/cm2 and open-circuit voltage of ~1.15 V under 375 nm light illumination with power intensity of 500 mW/cm2, corresponding to the highest photoresponsivity of ~4.306×10-3 A/W among all known ferroelectrics. Our results establish a general low-temperature solution route to produce single-crystal gradient films of ferroelectric oxides and thus open the avenue for their broad applications in self-powered photo-detectors, photovoltaic and optoelectronic devices.

14.
J Am Chem Soc ; 145(8): 4730-4735, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795018

RESUMO

CO2 activation is an integral component of thermocatalytic and electrocatalytic CO2 conversion to liquid fuels and value-added chemicals. However, the thermodynamic stability of CO2 and the high kinetic barriers to activating CO2 are significant bottlenecks. In this work, we propose that dual atom alloys (DAAs), homo- and heterodimer islands in a Cu matrix, can offer stronger covalent CO2 binding than pristine Cu. The active site is designed to mimic the Ni-Fe anaerobic carbon monoxide dehydrogenase CO2 activation environment in a heterogeneous catalyst. We find that combinations of early transition metals (TMs) and late TMs embedded in Cu are thermodynamically stable and can offer stronger covalent CO2 binding than Cu. Additionally, we identify DAAs that have CO binding energies similar to Cu, both to avoid surface poisoning and to ensure attainable CO diffusion to Cu sites so that the C-C bond formation ability of Cu can be retained in conjunction with facile CO2 activation at the DAA sites. Machine learning feature selection reveals that the more electropositive dopants are primarily responsible for attaining the strong CO2 binding. We propose seven Cu-based DAAs and two single atom alloys (SAAs) with early TM late TM combinations, (Sc, Ag), (Y, Ag), (Y, Fe), (Y, Ru), (Y, Cd), (Y, Au), (V, Ag), (Sc), and (Y), for facile CO2 activation.

15.
Faraday Discuss ; 241(0): 266-277, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134559

RESUMO

Tuning solubility and mechanical activation alters the stereoselectivity of the [2 + 2] photochemical cycloaddition of acenaphthylene. Photomechanochemical conditions produce the syn cyclobutane, whereas the solid-state reaction in the absence of mechanical activation provides the anti. When the photochemical dimerization occurs in a solubilizing organic solvent, there is no selectivity. Dimerization in H2O, in which acenaphthylene is insoluble, provides the anti product. DFT calculations reveal that insoluble and solid-state reactions proceed via a covalently bonded excimer, which drives anti selectivity. Alternatively, the noncovalently bound syn conformer is more mechanosusceptible than the anti, meaning it experiences greater destabilization, thereby producing the syn product under photomechanochemical conditions. Cyclobutanes are important components of biologically active natural products and organic materials, and we demonstrate stereoselective methods for obtaining syn or anti cyclobutanes under mild conditions and without organic solvents. With this work, we validate photomechanochemistry as a viable new direction for the preparation of complex organic scaffolds.


Assuntos
Acenaftenos , Ciclobutanos , Teoria da Densidade Funcional , Dimerização
16.
Sci Adv ; 8(47): eadd5953, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427321

RESUMO

Hafnia (HfO2) is a promising candidate for next-generation ferroelectric devices due to its robust ferroelectricity at reduced dimensions and its compatibility with silicon technology. Unfortunately, the origin of robust ferroelectricity and the underlying phase transition mechanism in HfO2 remain elusive. Here, we show that its ferroelectricity arises from two phase transitions, where the primary phase transition to antipolar phase is activated by tensile strain. Above a threshold antipolar mode amplitude, a strong cooperative polar-antipolar coupling enables a second ferroelectric phase transition superimposed on the antipolar phase. Because the antipolar mode is not susceptible to depolarization, this polar-antipolar coupling stabilizes the polarization against depolarization effects. Our results demonstrate that tensile strain and polar-antipolar coupling are the origins of ferroelectricity in HfO2 and provide a previously unknown mechanism against depolarization other than conventional improper ferroelectricity.

17.
J Am Chem Soc ; 144(48): 22150-22158, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442495

RESUMO

Lithium-oxygen batteries (LOBs) offer extremely high theoretical energy density and are therefore strong contenders for bringing conventional batteries into the next generation. To avoid deactivation and passivation of the electrode due to the gradual covering of the surface by discharge products, electrolytes with high donor number (DN) are becoming increasingly popular in LOBs. However, the mechanism of this electrolyte-assisted discharge process remains unclear in many aspects, including the lithium superoxide (LiO2) intermediate transportation mechanism and stability at both electrode/electrolyte interfaces and in bulk electrolytes. Here, we performed a systematic Born-Oppenheimer molecular dynamics (BOMD)-level investigation of the LiO2 solvation reactions at two interfaces with high- or low-DN electrolytes (dimethyl sulfoxide (DMSO) or acetonitrile (CH3CN), respectively), followed by examinations of stability and condensation once the LiO2 monomers are solvated. Release of partial discharge product LiO2 is found to be energetically favorable into DMSO from the Co3O4 cathode with a small energy barrier. However, in the presence of CH3CN electrolyte, the release of LiO2 from the electrode surface is found to be energetically unfavorable. Dissolved LiO2(sol) clusters in bulk DMSO solvents are found to be more favorable to dimerize and agglomerate into a toroidal shape rather than to decompose, which avoids the emergence of strong oxidant ions (O2-) and preserves the system stability. This study provides two complete molecular-level pathways (solution and surface) from first-principles understanding of LOBs, offering guidance for future selection and design of electrode catalysts and solvents.


Assuntos
Lítio , Oxigênio , Fontes de Energia Elétrica , Eletrólitos , Eletrodos , Dimetil Sulfóxido , Solventes
18.
J Phys Chem Lett ; 13(43): 10030-10034, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264234

RESUMO

Ionic covalent organic frameworks (iCOFs) have attractive properties that make them suitable for use as ion transport materials, as energy storage media, and for metal sorption. However, the synthetic pathways to prepare iCOFs are limited. Herein, we prepare an iCOF via a single-step reaction. The synthesized materials were isolated as polycrystalline nanowires. The theoretical and experimental data reveal that the synthesized iCOFs are predominately assembled into staggered configurations. The materials exhibit an uptake capacity of 3.5 g·g-1 for iodine. The ab initio calculations point to the role of bromide counterions, forming I2Br- as stable ions within the framework.

19.
Nat Commun ; 13(1): 3970, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804028

RESUMO

The elucidation of structure-to-function relationships for two-dimensional (2D) hybrid perovskites remains a primary challenge for engineering efficient perovskite-based devices. By combining insights from theory and experiment, we describe the introduction of bifunctional ligands that are capable of making strong hydrogen bonds within the organic bilayer. We find that stronger intermolecular interactions draw charge away from the perovskite layers, and we have formulated a simple and intuitive computational descriptor, the charge separation descriptor (CSD), that accurately describes the relationship between the Pb-I-Pb angle, band gap, and in-plane charge transport with the strength of these interactions. A higher CSD value correlates to less distortion of the Pb-I-Pb angle, a reduced band gap, and higher in-plane mobility of the perovskite. These improved material properties result in improved device characteristics of the resulting solar cells.

20.
J Am Chem Soc ; 144(16): 7181-7188, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417156

RESUMO

In this study, we propose that the curvature of graphene can be exploited to perform directional molecular motion and provide atomistic insights into the curvature-dependent molecular migration through density functional theory calculations. We first reveal the origin of the different migration trends observed experimentally for aromatic molecules with electron-donating and -withdrawing groups on p-doped functionalized graphene. Next, we show that the kinetic barrier for migration depends on the amount and nature of the curvature, that is, positive versus negative curvature. We find that the molecular migration on a wrinkled/rippled graphene sheet preferentially happens from the valley (positive curvature) to the mountain (negative curvature) regions. To understand the origin of such curvature-dependent molecular motion and migrational kinetic barrier trends, we develop a descriptor based on the frontier orbital orientation of graphene. Finally, based on these findings, we predict that time- and space-varying curvature can drive directional molecular motion on graphene and thus further propose that efforts should focus on exploring other two-dimensional materials as active platforms for performing controlled molecular motion.


Assuntos
Grafite , Elétrons , Grafite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...