Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Exp Biol ; 226(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665253

RESUMO

Behavioural studies have shown that sharks are capable of directional orientation to sound. However, only one previous experiment addresses the physiological mechanisms of directional hearing in sharks. Here, we used a directional shaker table in combination with the auditory evoked potential (AEP) technique to understand the broadscale directional hearing capabilities in the New Zealand carpet shark (Cephaloscyllium isabellum), rig shark (Mustelus lenticulatus) and school shark (Galeorhinus galeus). The aim of this experiment was to test if sharks are more sensitive to vertical (z-axis) or head-to-tail (x-axis) accelerations, and whether there are any differences between species. Our results support previous findings, suggesting that shark ears can receive sounds from all directions. Acceleration detection bandwidth was narrowest for the carpet shark (40-200 Hz), and broader for rig and school sharks (40-800 Hz). Greatest sensitivity bands were 40-80 Hz for the carpet shark, 100-200 Hz for the rig and 80-100 Hz for the school shark. Our results indicate that there may be differences in directional hearing abilities among sharks. The bottom-dwelling carpet shark was equally sensitive to vertical and head-to-tail particle accelerations. In contrast, both benthopelagic rig and school sharks appeared to be more sensitive to vertical accelerations at frequencies up to 200 Hz. This is the first study to provide physiological evidence that sharks may differ in their directional hearing and sound localisation abilities. Further comparative physiological and behavioural studies in more species with different lifestyles, habitats and feeding strategies are needed to further explore the drivers for increased sensitivity to vertical accelerations among elasmobranchs.

2.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439272

RESUMO

Auditory sensitivity measurements have been published for only 12 of the more than 1150 extant species of elasmobranchs (sharks, skates and rays). Thus, there is a need to further understand sound perception in more species from different ecological niches. In this study, the auditory evoked potential (AEP) technique was used to compare hearing abilities of the bottom-dwelling New Zealand carpet shark (Cephaloscyllium isabellum) and two benthopelagic houndsharks (Triakidae), the rig (Mustelus lenticulatus) and the school shark (Galeorhinus galeus). AEPs were measured in response to tone bursts (frequencies: 80, 100, 150, 200, 300, 450, 600, 800 and 1200 Hz) from an underwater speaker positioned 55 cm in front of the shark in an experimental tank. AEP detection thresholds were derived visually and statistically, with statistical measures slightly more sensitive (∼4 dB) than visual methodology. Hearing abilities differed between species, mainly with respect to bandwidth rather than sensitivity. Hearing was least developed in the benthic C. isabellum [upper limit: 300 Hz, highest sensitivity: 100 Hz (82.3±1.5 dB re. 1 µm s-2)] and had a wider range in the benthopelagic rig and school sharks [upper limit: 800 Hz; highest sensitivity: 100 Hz (79.2±1.6 dB re. 1 µm s-2) for G. galeus and 150 Hz (74.8±1.8 dB re. 1 µm s-2) for M. lenticulatus]. The data are consistent with those known for 'hearing non-specialist' teleost fishes that detect only particle motion, not pressure. Furthermore, our results provide evidence that benthopelagic sharks exploit higher frequencies (max. 800 Hz) than some of the bottom-dwelling sharks (max. 300 Hz). Further behavioural and morphological studies are needed to identify what ecological factors drive differences in upper frequency limits of hearing in elasmobranchs.


Assuntos
Tubarões , Animais , Tubarões/fisiologia , Potenciais Evocados Auditivos , Audição/fisiologia , Testes Auditivos , Ecossistema , Limiar Auditivo/fisiologia
3.
J Fish Biol ; 103(2): 411-424, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204109

RESUMO

Sharks (elasmobranchs) are an ancient, diverse group of fishes, representing a basal stage in the evolution of vertebrate hearing. Yet, our understanding of behavioural measures of hearing abilities in sharks is limited. To address this, an operant conditioning paradigm was designed, and scalloped hammerhead Sphyrna lewini and rig (spotted estuary smooth hound) Mustelus lenticulatus were successfully trained to respond to pure-tone acoustic stimuli from an underwater speaker. After 2-3 weeks of training, both species showed distinctive responses to these acoustic stimuli and retained this behaviour when reinforced. S. lewini responded to a 400 Hz pulsed tone with an abrupt increase in tailbeat frequency (97 beats per 30 s vs. 69 beats for a 2 kHz control and 70 beats for no signal) and sustained vigorous swimming (arousal response) for at least 30 s. In response to a 200 Hz pulsed tone, M. lenticulatus visited a target area under the speaker significantly more frequently (13.4 ± 4.3 times per minute vs. 1.4 ± 1.5 times for a 1.2 kHz control and 0.9 ± 0.01 times for no signal) and swam circles under the speaker to search for food. The authors used S. lewini arousal responses to pure-tone stimuli of 40, 80, 200, 400, 600 and 800 Hz to generate a provisional hearing-threshold curve. The results show that S. lewini adapts to low-frequency hearing (greatest sensitivity at 200 Hz, upper limit 800 Hz), which is like other coastal pelagic sharks that have been investigated so far. Despite challenges operant acoustic conditioning studies are a viable method for revealing auditory capabilities of sharks.


Assuntos
Tubarões , Animais , Tubarões/fisiologia , Audição , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...