Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 79: 151-160, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629002

RESUMO

Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO3 (0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150µm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in Tg with increased AgNO3 concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications.


Assuntos
Prata/química , Celulose , Nanopartículas Metálicas , Pele , Engenharia Tecidual , Alicerces Teciduais
2.
Carbohydr Polym ; 114: 238-245, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25263887

RESUMO

In this study, a novel fibrous membrane of hydroxyethyl cellulose (HEC)/poly(vinyl alcohol) blend was successfully fabricated by electrospinning technique and characterized. The concentration of HEC (5%) with PVA (15%) was optimized, blended in different ratios (30-50%) and electrospun to get smooth nanofibers. Nanofibrous membranes were made water insoluble by chemically cross-linking by glutaraldehyde and used as scaffolds for the skin tissue engineering. The microstructure, morphology, mechanical and thermal properties of the blended HEC/PVA nanofibrous scaffolds were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning colorimetry, universal testing machine and thermogravimetric analysis. Cytotoxicity studies on these nanofibrous scaffolds were carried out using human melanoma cells by the MTT assays. The cells were able to attach and spread in the nanofibrous scaffolds as shown by the SEM images. These preliminary results show that these nanofibrous scaffolds that supports cell adhesion and proliferation is promising for skin tissue engineering.


Assuntos
Celulose/análogos & derivados , Nanoestruturas/química , Pele/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Varredura Diferencial de Calorimetria , Linhagem Celular , Proliferação de Células/fisiologia , Celulose/química , Humanos , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanoestruturas/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Asian Pac J Trop Biomed ; 4(7): 545-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25183274

RESUMO

OBJECTIVE: To screen the cytotoxic activity of Melastoma malabathricum (M. malabathricum) against human breast cancer cell line (MCF-7) in vitro. METHODS: A three steps extraction protocol using n-hexane, chloroform and methanol as the solvents systems was carried out on leaves, stems and flowers of M. malabathricum. Dimethyl sulfoxide was used in extracts dilution and serial dilutions were conducted to obtain five different extract concentrations (100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5 µg/mL and 6.25 µg/mL). The evaluation of cell growth was determined using methylene blue assay. RESULTS: Methanol extract from the leaves showed significant anticancer activity against MCF-7 cell lines with the IC50 value of 7.14 µg/ml while methanol and chloroform extract from the flowers exhibited a moderate activity towards MCF-7 cell line with the IC50 value of 33.63 µg/mL and 45.76 µg/mL respectively after 72 h of treatment. CONCLUSIONS: The extracts from leaves and flowers of M. malabathricum showed promising anticancer activity toward human breast cancer cell lines with the lowest IC50 at 7.14 µg/mL while the extracts from stems showed less growth inhibition activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...