Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(19): 22987-22999, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33973776

RESUMO

Mechanical and physical properties of porous polymers are highly dependent on the arrangement of their internal pores, which once synthesized are widely considered static. However, here we introduce an unconventional dynamic porosity strategy in physically networked elastomer polymers, irrespective of their chemistry. This strategy allows for an omnidirectional and reversible reconfiguration of porosity in response to applied mechanical deformations, even at ambient conditions. In particular, the normal contact pressure between human fingers (just 0.62 MPa) applied on thin elastomer films results in a permanent reversion of the pores to a denser and more solid state. The porous-to-solid transition leads to a 3 order of magnitude reduction in pore density and up to a 22% relative volumetric shrinkage of the films, resulting in an opaque-to-transparent transition (OTT) that acts as a visual indication of porosity state (porous vs nonporous). It is shown that the pore reversion pressure onset is dependent on the average pore-to-pore distance that is controllable through process-specific parameters. Furthermore, the porosity transition is reversible for multiple cycles when the through-plane compression activation is coupled with an in-plane stretch (ε = 700%). A strain energy-mediated thermodynamic model is successfully implemented to confirm the effects of mechanical deformations on pore reversion and generation. Finally, applications of the newfound dynamic porosity concept are exploited for pressure indication, on-demand modulation of materials' mechanical and thermal characteristics, and flexible photomasks.

2.
ACS Appl Mater Interfaces ; 11(26): 23463-23473, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252496

RESUMO

The facile fabrication of functionally graded all-graphene films using a single-step casting process is reported. The films consist of a self-assembled graphene oxide (GO) precursor that can be reduced to different levels on an active metal substrate. Control of processing conditions such as the underlying substrate metal and the film-drying environment results in an ability to tailor the internal architecture of the films as well as to functionally grade the reduction of GO. A gradient arrangement within each film, where one side is electrically conductive reduced GO (rGO) and the other side is insulating GO, was confirmed by scanning electron microscopy, Raman, X-ray diffraction, Fourier transform infrared, and X-ray photoelectron spectroscopy characterization studies. All-graphene-based freestanding films with selectively reduced GO were used in transient electronic applications such as flexible circuitry and RFID tag antennas, where their decommissioning is easily achieved by capitalizing on GO's ability to readily dissociate and create a stable suspension in water. Furthermore, the functionally graded structure was found to exhibit differential swelling behavior, and its potential applications in graphene-based actuators are outlined.

3.
Adv Mater ; 30(30): e1800200, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29904962

RESUMO

2D nanomaterials are finding numerous applications in next-generation electronics, consumer goods, energy generation and storage, and healthcare. The rapid rise of utility and applications for 2D nanomaterials necessitates developing means for their mass production. This study details a new compressible flow exfoliation method for producing 2D nanomaterials using a multiphase flow of 2D layered materials suspended in a high-pressure gas undergoing expansion. The expanded gas-solid mixture is sprayed in a suitable solvent, where a significant portion (up to 10% yield) of the initial hexagonal boron nitride material is found to be exfoliated with a mean thickness of 4.2 nm. The exfoliation is attributed to the high shear rates (γ˙ > 105 s-1 ) generated by supersonic flow of compressible gases inside narrow orifices and converging-diverging channels. This method has significant advantages over current 2D material exfoliation methods, such as chemical intercalation and exfoliation, as well as liquid phase shear exfoliation, with the most obvious benefit being the fast, continuous nature of the process. Other advantages include environmentally friendly processing, reduced occurrence of defects, and the versatility to be applied to any 2D layered material using any gaseous medium. Scaling this process to industrial production has a strong possibility of reducing the cost of creating 2D nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...