Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 149: 106043, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115302

RESUMO

With the advent of machine learning (ML) and deep learning (DL) empowered applications for critical applications like healthcare, the questions about liability, trust, and interpretability of their outputs are raising. The black-box nature of various DL models is a roadblock to clinical utilization. Therefore, to gain the trust of clinicians and patients, we need to provide explanations about the decisions of models. With the promise of enhancing the trust and transparency of black-box models, researchers are in the phase of maturing the field of eXplainable ML (XML). In this paper, we provided a comprehensive review of explainable and interpretable ML techniques for various healthcare applications. Along with highlighting security, safety, and robustness challenges that hinder the trustworthiness of ML, we also discussed the ethical issues arising because of the use of ML/DL for healthcare. We also describe how explainable and trustworthy ML can resolve all these ethical problems. Finally, we elaborate on the limitations of existing approaches and highlight various open research problems that require further development.


Assuntos
Instalações de Saúde , Aprendizado de Máquina , Atenção à Saúde , Humanos , Inquéritos e Questionários
2.
Artigo em Inglês | MEDLINE | ID: mdl-34727036

RESUMO

OBJECTIVE: Scarcity of good quality electroencephalography (EEG) data is one of the roadblocks for accurate seizure prediction. This work proposes a deep convolutional generative adversarial network (DCGAN) to generate synthetic EEG data. Another objective of our study is to use transfer-learning (TL) for evaluating the performance of four well-known deep-learning (DL) models to predict epileptic seizure. METHODS: We proposed an algorithm that generate synthetic data using DCGAN trained on real EEG data in a patient-specific manner. We validate quality of generated data using one-class SVM and a new proposal namely convolutional epileptic seizure predictor (CESP). We evaluate performance of VGG16, VGG19, ResNet50, and Inceptionv3 trained on augmented data using TL with average time of 10 min between true prediction and seizure onset samples. RESULTS: The CESP model achieves sensitivity of 78.11% and 88.21%, and false prediction rate of 0.27/h and 0.14/h for training on synthesized and testing on real Epilepsyecosystem and CHB-MIT datasets, respectively. Using TL and augmented data, Inceptionv3 achieved highest accuracy with sensitivity of 90.03% and 0.03 FPR/h. With the proposed data augmentation method prediction results of CESP model and Inceptionv3 increased by 4-5% as compared to state-of-the-art augmentation techniques. CONCLUSION: The performance of CESP shows that synthetic data acquired association between features and labels very well and by using the augmented data CESP predicted better than chance level for both datasets. SIGNIFICANCE: The proposed DCGAN can be used to generate synthetic data to increase the prediction performance and to overcome good quality data scarcity issue.


Assuntos
Aprendizado Profundo , Epilepsia , Algoritmos , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico
3.
IEEE Rev Biomed Eng ; 14: 139-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32746369

RESUMO

With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.


Assuntos
Eletroencefalografia/métodos , Aprendizado de Máquina , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...