Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21764, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027658

RESUMO

Mahseer are large-scale fish of the Cyprinidae family that inhabit South and Southeast Asian mountainous streams, rivers, and reservoirs. Tor tor and Tor putitora, two species of the Tor genus, were reportedly found in Bangladesh. This study aimed to confirm the species level of specimens collected from the Sangu River. The collected samples were identified using the DNA barcoding technique, followed by amplifying 645 bp of the cytochrome oxidase c subunit 1 gene (COI) using the FishF1/FishR1 universal primer. The sequence similarity was conducted using BOLD and NCBI databases which showed 99.85-100 % similarity to the reference genome. The genetic divergence between T. putitora vs. SRI, BT, and ST was found to be 0.0239, 0.0239, and 0.0238, respectively. The genetic divergence between T. tor vs. SRI, BT, and ST was 0.0272, 0.0272, and 0.0270, respectively. In the phylogenetic tree, two clusters were formed where collected specimens (SRI, BT, and ST) formed a subcluster with the reference genome (NC_056296.1 T. barakae) with 100 % bootstrap support. This study's findings revealed the presence of a new Tor species named Tor barakae in the Sangu River basin in Bangladesh.

2.
Sci Rep ; 11(1): 17277, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446773

RESUMO

Five years of datasets from 2015 to 2019 of whole genome shotgun sequencing for cells trapped on 0.2-µm filters of seawater collected monthly from Ofunato Bay, an enclosed bay in Japan, were analysed, which included the 2015 data that we had reported previously. Nucleotide sequences were determined for extracted DNA from three locations for both the upper (1 m) and deeper (8 or 10 m) depths. The biotic communities analysed at the domain level comprised bacteria, eukaryotes, archaea and viruses. The relative abundance of bacteria was over 60% in most months for the five years. The relative abundance of the SAR86 cluster was highest in the bacterial group, followed by Candidatus Pelagibacter and Planktomarina. The relative abundance of Ca. Pelagibacter showed no relationship with environmental factors, and those of SAR86 and Planktomarina showed positive correlations with salinity and dissolved oxygen, respectively. The bacterial community diversity showed seasonal changes, with high diversity around September and low diversity around January for all five years. Nonmetric multidimensional scaling analysis also revealed that the bacterial communities in the bay were grouped in a season-dependent manner and linked with environmental variables such as seawater temperature, salinity and dissolved oxygen.


Assuntos
Baías/microbiologia , Metagenômica/métodos , Microbiota/genética , Estações do Ano , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Cianobactérias/classificação , Cianobactérias/genética , Ecossistema , Geografia , Japão , Oxigênio/metabolismo , Dinâmica Populacional , Salinidade , Água do Mar/química , Temperatura , Sequenciamento Completo do Genoma/métodos
3.
Gene ; 665: 127-132, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29709637

RESUMO

Small photosynthetic eukaryotes play important roles in oceanic food webs in coastal regions. We investigated seasonal changes in the communities of photosynthetic picoeukaryotes (PPEs) of the class Mamiellophyceae, including the genera Bathycoccus, Micromonas and Ostreococcus, in Ofunato Bay, which is located in northeastern Japan and faces the Pacific Ocean. The abundances of PPEs were assessed over a period of one year in 2015 at three sampling stations, KSt. 1 (innermost bay area), KSt. 2 (middle bay area) and KSt. 3 (bay entrance area) at depths of 1 m (KSt. 1, KSt. 2 and KSt. 3), 8 m (KSt. 1) or 10 m (KSt. 2 and KSt. 3) by employing MiSeq shotgun metagenomic sequencing. The total abundances of Bathycoccus, Ostreococcus and Micromonas were in the ranges of 42-49%, 35-49% and 13-17%, respectively. Considering all assayed sampling stations and depths, seasonal changes revealed high abundances of PPEs during the winter and summer and low abundances during late winter to early spring and late summer to early autumn. Bathycoccus was most abundant in the winter, and Ostreococcus showed a high abundance during the summer. Another genus, Micromonas, was relatively low in abundance throughout the study period. Taken together with previously suggested blooming periods of phytoplankton, as revealed by chlorophyll a concentrations in Ofunato Bay during spring and autumn, these results for PPEs suggest that greater phytoplankton blooming has a negative influence on the seasonal occurrences of PPEs in the bay.


Assuntos
Baías , Clorófitas , DNA de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Estações do Ano , Clorófitas/classificação , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , DNA de Plantas/genética , DNA de Plantas/metabolismo
4.
Gene ; 665: 149-154, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29709640

RESUMO

Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matters into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-µm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3 on the KEGG matrix. These results suggest that aquaculture activities markedly affect bacterial functions.


Assuntos
Bactérias , Biodiversidade , Metagenoma , Consórcios Microbianos/fisiologia , Ostreidae/microbiologia , Estações do Ano , Animais , Aquicultura , Bactérias/genética , Bactérias/metabolismo
5.
Gene ; 665: 174-184, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29705130

RESUMO

Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio Currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.


Assuntos
Bactérias , Baías/microbiologia , Genes Bacterianos , Estações do Ano , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Microbiologia da Água , Animais , Bactérias/genética , Bactérias/metabolismo , Metagenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...