Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Trends Cell Biol ; 34(7): 527-530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834379

RESUMO

This report aims to propose the novel term 'neutrophil endoplasmic reticulum (ER) stress' (NERS). NERS explores the influence of neutrophil extracellular trap (NET) formation and exacerbation of respiratory ailments. This inquiry aims to advance comprehension in neutrophil biology and respiratory health.


Assuntos
Estresse do Retículo Endoplasmático , Armadilhas Extracelulares , Inflamação , Neutrófilos , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Neutrófilos/metabolismo
2.
Aging (Albany NY) ; 15(23): 13608-13627, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38095615

RESUMO

Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.


Assuntos
Dislipidemias , Sirtuína 1 , Ratos , Animais , Sirtuína 1/metabolismo , Endorribonucleases/genética , Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Acetilação , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Obesidade/metabolismo , Óxido Nítrico/metabolismo
3.
World J Mens Health ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37853537

RESUMO

PURPOSE: Benign prostate hyperplasia (BPH) is a common age-related chronic condition. Its pathogenesis involves androgen imbalance, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress. This study aims to assess the protective effect of finasteride, a 5α-reductase inhibitor, against testosterone propionate (TP)-induced BPH in rats and explore its potential mechanism of action. MATERIALS AND METHODS: TP-induced BPH rats received either saline or finasteride (1 mg/kg) orally once a day for 7 weeks. Prior to sacrificing the animals, blood samples were collected. After sacrifice, prostate and tissue around the prostate were dissected from seminal vesical for further analysis. Body weight, prostate weight, dihydrotestosterone (DHT), 5α-reductase type 2 (5-AR2), and prostate-specific antigen (PSA) levels were measured. In addition, HIF-1α, VEGF, MMP-2 expressions in prostate, oxidative stress, inflammation, and ER stress responses were analyzed to understand the mechanism of action of finasteride. RESULTS: Finasteride administration inhibited prostate enlargement, DHT, 5-AR2, and PSA levels in BPH rats. Additionally, finasteride inhibited angiogenesis markers such as HIF-1α, VEGF, and MMP-2. Moreover, components of oxidative stress, inflammation, and ER stress responses were significantly regulated by finasteride treatment. CONCLUSIONS: This study suggests that finasteride prevents BPH-associated symptoms by regulating angiogenesis, reactive oxygen species, ER stress responses, and inflammation, another mechanism to explain the effect of the 5α-reductase against BPH.

4.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771450

RESUMO

Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned into five OVX and a sham-operated (sham) group. OVX subgroups include OVX, vehicle-treated OVX group; E2, OVX with 100 µg/kg 17ß-estradiol; and RLE 0.25, 0.5, and 1, OVX rats treated with 0.25, 0.5, and 1 g/kg/day RLE, respectively. Two weeks into the bilateral ovariectomy, all the rats were orally administered with or without RLE daily for 12 weeks. OVX rats administered with RLE showed higher bone density, relatively low tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower reactive oxygen species (ROS) within bone tissues compared to vehicle-treated OVX rats. Furthermore, supplementation of RLE improved bone mineral density (BMD) and bone microstructure in the total femur. RLE prevented RANKL-induced osteoclast differentiation and expression of osteoclastogenesis-related genes such as Cal-R, MMP-9, cathepsin K, and TRAP in RANKL-induced RAW264.7 cells. Moreover, RLE administration lowered the intracellular ROS levels by reducing NADPH oxidase 1 (NOX-1) and 4-hydroxynonenal (4HNE). These results suggest that RLE alleviates bone mass loss in the OVX rats by inhibiting osteoclastogenesis, where reduced ROS and its associated signalings were involved.


Assuntos
Boehmeria , Osteoporose , Extratos Vegetais , Animais , Feminino , Ratos , Densidade Óssea , Osteoclastos , Osteoporose/prevenção & controle , Ovariectomia , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...