Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioinform ; 3: 1123993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875146

RESUMO

There exist several databases that provide virus-host protein interactions. While most provide curated records of interacting virus-host protein pairs, information on the strain-specific virulence factors or protein domains involved, is lacking. Some databases offer incomplete coverage of influenza strains because of the need to sift through vast amounts of literature (including those of major viruses including HIV and Dengue, besides others). None have offered complete, strain specific protein-protein interaction records for the influenza A group of viruses. In this paper, we present a comprehensive network of predicted domain-domain interaction(s) (DDI) between influenza A virus (IAV) and mouse host proteins, that will allow the systematic study of disease factors by taking the virulence information (lethal dose) into account. From a previously published dataset of lethal dose studies of IAV infection in mice, we constructed an interacting domain network of mouse and viral protein domains as nodes with weighted edges. The edges were scored with the Domain Interaction Statistical Potential (DISPOT) to indicate putative DDI. The virulence network can be easily navigated via a web browser, with the associated virulence information (LD50 values) prominently displayed. The network will aid influenza A disease modeling by providing strain-specific virulence levels with interacting protein domains. It can possibly contribute to computational methods for uncovering influenza infection mechanisms mediated through protein domain interactions between viral and host proteins. It is available at https://iav-ppi.onrender.com/home.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35439138

RESUMO

Protein secondary structure (SS) prediction is a classic problem of computational biology and is widely used in structural characterization and to infer homology. While most SS predictors have been trained on thousands of sequences, a previous approach had developed a compact model of training proteins that used a C-Alpha, C-Beta Side Chain (CABS)-algorithm derived energy based feature representation. Here, the previous approach is extended to Deep Belief Networks (DBN). Deep learning methods are notorious for requiring large datasets and there is a wide consensus that training deep models from scratch on small datasets, works poorly. By contrast, we demonstrate a simple DBN architecture containing a single hidden layer, trained only on the CB513 dataset. Testing on an independent set of G Switch proteins improved the Q 3 score of the previous compact model by almost 3%. The findings are further confirmed by comparison to several deep learning models which are trained on thousands of proteins. Finally, the DBN performance is also compared with Position Specific Scoring Matrix (PSSM)-profile based feature representation. The importance of (i) structural information in protein feature representation and (ii) complementary small dataset learning approaches for detection of structural fold switching are demonstrated.


Assuntos
Algoritmos , Biologia Computacional , Consenso , Matrizes de Pontuação de Posição Específica , Domínios Proteicos
3.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36094101

RESUMO

Epitope residues located on viral surface proteins are of immense interest in immunology and related applications such as vaccine development, disease diagnosis and drug design. Most tools rely on sequence-based statistical comparisons, such as information entropy of residue positions in aligned columns to infer location and properties of epitope sites. To facilitate cross-structural comparisons of epitopes on viral surface proteins, a python-based extraction tool implemented with Jupyter notebook is presented (Jupytope). Given a viral antigen structure of interest, a list of known epitope sites and a reference structure, the corresponding epitope structural properties can quickly be obtained. The tool integrates biopython modules for commonly used software such as NACCESS, DSSP as well as residue depth and outputs a list of structure-derived properties such as dihedral angles, solvent accessibility, residue depth and secondary structure that can be saved in several convenient data formats. To ensure correct spatial alignment, Jupytope takes a list of given epitope sites and their corresponding reference structure and aligns them before extracting the desired properties. Examples are demonstrated for epitopes of Influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) viral strains. The extracted properties assist detection of two Influenza subtypes and show potential in distinguishing between four major clades of SARS-CoV2, as compared with randomized labels. The tool will facilitate analytical and predictive works on viral epitopes through the extracted structural information. Jupytope and extracted datasets are available at https://github.com/shamimarashid/Jupytope.


Assuntos
COVID-19 , Influenza Humana , Humanos , Epitopos , SARS-CoV-2 , RNA Viral , Proteínas de Membrana , Biologia Computacional
4.
BMC Med Genomics ; 13(1): 9, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973709

RESUMO

BACKGROUND: Influenza reassortment, a mechanism where influenza viruses exchange their RNA segments by co-infecting a single cell, has been implicated in several major pandemics since 19th century. Owing to the significant impact on public health and social stability, great attention has been received on the identification of influenza reassortment. METHODS: We proposed a novel computational method named HopPER (Host-prediction-based Probability Estimation of Reassortment), that sturdily estimates reassortment probabilities through host tropism prediction using 147 new features generated from seven physicochemical properties of amino acids. We conducted the experiments on a range of real and synthetic datasets and compared HopPER with several state-of-the-art methods. RESULTS: It is shown that 280 out of 318 candidate reassortants have been successfully identified. Additionally, not only can HopPER be applied to complete genomes but its effectiveness on incomplete genomes is also demonstrated. The analysis of evolutionary success of avian, human and swine viruses generated through reassortment across different years using HopPER further revealed the reassortment history of the influenza viruses. CONCLUSIONS: Our study presents a novel method for the prediction of influenza reassortment. We hope this method could facilitate rapid reassortment detection and provide novel insights into the evolutionary patterns of influenza viruses.


Assuntos
Bases de Dados Genéticas , Evolução Molecular , Genoma Viral , Vírus da Influenza A/genética , Influenza Humana/genética , Modelos Genéticos , Animais , Humanos , Suínos
5.
Int J Infect Dis ; 90: 84-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31669593

RESUMO

BACKGROUND: This study compared the genomes of influenza viruses that caused mild infections among outpatients and severe infections among hospitalized patients in Singapore, and characterized their molecular evolution and receptor-binding specificity. METHODS: The complete genomes of influenza A/H1N1, A/H3N2 and B viruses that caused mild infections among outpatients and severe infections among inpatients in Singapore during 2012-2015 were sequenced and characterized. Using various bioinformatics approaches, we elucidated their evolutionary, mutational and structural patterns against the background of global and vaccine strains. RESULTS: The phylogenetic trees of the 8 gene segments revealed that the outpatient and inpatient strains overlapped with representative global and vaccine strains. We observed a cluster of inpatients with A/H3N2 strains that were closely related to vaccine strain A/Texas/50/2012(H3N2). Several protein sites could accurately discriminate between outpatient versus inpatient strains, with site 221 in neuraminidase (NA) achieving the highest accuracy for A/H3N2. Interestingly, amino acid residues of inpatient but not outpatient isolates at those sites generally matched the corresponding residues in vaccine strains, except at site 145 of hemagglutinin (HA). This would be especially relevant for future surveillance of A/H3N2 strains in relation to their antigenicity and virulence. Furthermore, we observed a trend in which the HA proteins of influenza A/H3N2 and A/H1N1 exhibited enhanced ability to bind both avian and human host cell receptors. In contrast, the binding ability to each receptor was relatively stable for the HA of influenza B. CONCLUSIONS: Overall, our findings extend our understanding of the molecular and structural evolution of influenza virus strains in Singapore within the global context of these dynamic viruses.


Assuntos
Betainfluenzavirus/genética , Evolução Molecular , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Adolescente , Adulto , Idoso , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hospitalização , Humanos , Influenza Humana/virologia , Pessoa de Meia-Idade , Mutação , Neuraminidase/genética , Pacientes Ambulatoriais , Filogenia , Receptores Virais/química , Singapura , Proteínas Virais/genética , Adulto Jovem
6.
BMC Bioinformatics ; 17(1): 362, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27618812

RESUMO

BACKGROUND: Protein secondary structure prediction (SSP) has been an area of intense research interest. Despite advances in recent methods conducted on large datasets, the estimated upper limit accuracy is yet to be reached. Since the predictions of SSP methods are applied as input to higher-level structure prediction pipelines, even small errors may have large perturbations in final models. Previous works relied on cross validation as an estimate of classifier accuracy. However, training on large numbers of protein chains compromises the classifier ability to generalize to new sequences. This prompts a novel approach to training and an investigation into the possible structural factors that lead to poor predictions. Here, a small group of 55 proteins termed the compact model is selected from the CB513 dataset using a heuristics-based approach. In a prior work, all sequences were represented as probability matrices of residues adopting each of Helix, Sheet and Coil states, based on energy calculations using the C-Alpha, C-Beta, Side-chain (CABS) algorithm. The functional relationship between the conformational energies computed with CABS force-field and residue states is approximated using a classifier termed the Fully Complex-valued Relaxation Network (FCRN). The FCRN is trained with the compact model proteins. RESULTS: The performance of the compact model is compared with traditional cross-validated accuracies and blind-tested on a dataset of G Switch proteins, obtaining accuracies of ∼81 %. The model demonstrates better results when compared to several techniques in the literature. A comparative case study of the worst performing chain identifies hydrogen bond contacts that lead to Coil ⇔ Sheet misclassifications. Overall, mispredicted Coil residues have a higher propensity to participate in backbone hydrogen bonding than correctly predicted Coils. CONCLUSIONS: The implications of these findings are: (i) the choice of training proteins is important in preserving the generalization of a classifier to predict new sequences accurately and (ii) SSP techniques sensitive in distinguishing between backbone hydrogen bonding and side-chain or water-mediated hydrogen bonding might be needed in the reduction of Coil ⇔ Sheet misclassifications.


Assuntos
Redes Neurais de Computação , Proteínas/química , Humanos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...