Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(10): 2796-2811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822615

RESUMO

Anaerobic treatment of oily substrate, known as grease trap waste (GTW), was investigated for its practicability via continuous stirred tank reactor (CSTR) at different operating conditions and selected recovery strategies of feeding frequency efficacy. This study determine the performance of feeding frequency efficacy, namely feeding every 24 hours (R24H) and feeding every 12 hours (R12H). Under organic loading rate (OLR) of 2.2 gCOD/L.day, R12H exhibited methane composition of 57%, methane production rate of 0.27 LCH4/L.day, and methane yield of 0.14 LCH4/gCODremoved. At the same OLR, R24H recorded methane composition of 60%, methane production rate of 0.29 LCH4/L.day and similar methane yield as R12H. Findings indicated that R24H showed performance comparable to that of R12H. Given minor variation observed in performance, it is recommended that plant operators may consider scheduling two feedings per day for low loading conditions and switch to one feeding per day for higher loading conditions. This strategy is designed to balance the system and prevent shock loads, which could lead to plant shutdowns. This mechanism will induce their conversion to volatile fatty acids (VFAs); thus, reducing the risk of acid accumulation and pH drops, which could inhibit methanogens to produce methane, especially for oily substrate.


Assuntos
Biocombustíveis , Reatores Biológicos , Metano , Anaerobiose , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos
2.
Chemosphere ; 281: 130873, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34022596

RESUMO

Palm oil mill effluent (POME) is highly polluted wastewater that is to the environment if discharged directly to water source without proper treatment. Thus, a highly efficient treatment with reasonable cost is needed. This study reports the coagulation treatment of POME using integrated copperas and calcium hydroxide. The properties of copperas were determined using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Coagulation was conducted using jar test experiments for various coagulant formulations and dosages (1000-5000 mg/L), initial pH (4-10), stirring speed (100-300 rpm), and sedimentation time (30-180 min). The characterisation results show that copperas has a compact gel network structure with strong O-H stretching and monoclinic crystal structure. The effectiveness of integrated copperas and calcium hydroxide (Ca(OH)2) with the formulation of 80:20 removed 77.6%, 73.4%, and 57.0% of turbidity, colour, and chemical oxygen demand (COD), respectively. Furthermore, the integration of copperas and Ca(OH)2 produced heavier flocs (ferric hydroxide), which improved gravity settling. The coagulation equilibrium analysis shows that the Langmuir model best described the anaerobic POME sample as the process exhibited monolayer adsorption. The results of this study show that copperas with the aid of Ca(OH)2 demonstrated high potential in the removal of those parameters from POME with acceptable final pH for discharge. The utilisation of this by-product as a coagulant in effluent treatment can unlock the potential of copperas for wider applications, improve its marketability, and reduce gypsum waste generation from the TiO2 industry.


Assuntos
Resíduos Industriais , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Hidróxido de Cálcio , Resíduos Industriais/análise , Óleo de Palmeira , Óleos de Plantas
3.
J Environ Manage ; 213: 400-408, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29505995

RESUMO

Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.


Assuntos
Carvão Vegetal , Frutas , Resíduos Industriais , Óleo de Palmeira , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...