Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(9): e73856, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086298

RESUMO

Decline in wild populations as a result of anthropogenic impact is widely considered to have evolutionary consequences for the species concerned. Here we examine changes in developmental stability in the painted hunting dog (Lycaon pictus), which once occupied most of sub-Saharan Africa but has undergone a dramatic population decline in the last century. Fluctuating asymmetry (FA) was used as an indicator of developmental stability and measured in museum skull specimens spanning a hundred year period. A comparison with the more ubiquitous black-backed jackal (Canis mesomelas) revealed FA in L. pictus to be high. Furthermore, the data indicate a temporal increase in FA over time in L. pictus, corresponding to the period of its population decline. The high rate of change is compatible with genetic drift although environmental factors are also likely to be important. Lowering developmental stability over time may have direct fitness consequences and as such represents an unacknowledged threat to future resilience of the population.


Assuntos
Evolução Biológica , Canidae/fisiologia , Espécies em Perigo de Extinção , Animais , Canidae/genética , Fósseis , Fenótipo
2.
Mol Ecol ; 21(6): 1379-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22320891

RESUMO

Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e) < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.


Assuntos
Animais Selvagens/genética , Canidae/genética , Espécies em Perigo de Extinção , Variação Genética , África , Animais , DNA Mitocondrial/genética , Frequência do Gene , Deriva Genética , Genética Populacional , Antígenos de Histocompatibilidade Classe II/genética , Repetições de Microssatélites , Dados de Sequência Molecular , Seleção Genética , Análise de Sequência de DNA
3.
Am Nat ; 172(4): 508-18, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18729728

RESUMO

This study empirically tests two foundation ecological theories: (1) pack hunting is a driver for the evolution of sociality; and (2) species have a finite energy potential, whereby increased maintenance costs result in decreased reproductive effort. Using activity and prey data from 22 packs of African wild dogs (Lycaon pictus), we parameterized a model detailing the energetic cost/benefit of cooperative hunting. Larger pack size increased foraging time, prey size, and capture probability while reducing chase distance, resulting in a rapidly increasing net rate of energy intake up to a pack size of five, which peaked at 10 individuals and then declined. With a streamlined body plan necessary for hypercursoriality limiting stomach capacity in smaller packs, it was demonstrated that the group hunting benefit will rather accrue to widely foraging predators than to "sit-and-wait" ones. Reproductive effort, measured by the number of pups born, revealed smaller litters with decreasing pack size, validated finite energy theory, and highlighted a "poverty trap" where smaller groups have lower foraging gains, smaller litters, and increased vulnerability to extirpation. Consequently, these results demonstrated a mechanistic example of pervasive selection for maximal body size (Cope's rule), leading to a macroevolutionary ratchet, where sociality linked to hypercursoriality is betrayed by an Achilles' heel.


Assuntos
Comportamento Animal , Canidae/fisiologia , Animais , Animais Selvagens , Ecossistema , Modelos Biológicos , Comportamento Social , Zimbábue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...