Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(5)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782542

RESUMO

BACKGROUND: Neoantigens can serve as targets for T cell-mediated antitumor immunity via personalized neopeptide vaccines. Interim data from our clinical study NCT03715985 showed that the personalized peptide-based neoantigen vaccine EVX-01, formulated in the liposomal adjuvant, CAF09b, was safe and able to elicit EVX-01-specific T cell responses in patients with metastatic melanoma. Here, we present results from the dose-escalation part of the study, evaluating the feasibility, safety, efficacy, and immunogenicity of EVX-01 in addition to anti-PD-1 therapy. METHODS: Patients with metastatic melanoma on anti-PD-1 therapy were treated in three cohorts with increasing vaccine dosages (twofold and fourfold). Tumor-derived neoantigens were selected by the AI platform PIONEER and used in personalized therapeutic cancer peptide vaccines EVX-01. Vaccines were administered at 2-week intervals for a total of three intraperitoneal and three intramuscular injections. The study's primary endpoint was safety and tolerability. Additional endpoints were immunological responses, survival, and objective response rates. RESULTS: Compared with the base dose level previously reported, no new vaccine-related serious adverse events were observed during dose escalation of EVX-01 in combination with an anti-PD-1 agent given according to local guidelines. Two patients at the third dose level (fourfold dose) developed grade 3 toxicity, most likely related to pembrolizumab. Overall, 8 out of the 12 patients had objective clinical responses (6 partial response (PR) and 2 CR), with all 4 patients at the highest dose level having a CR (1 CR, 3 PR). EVX-01 induced peptide-specific CD4+ and/or CD8+T cell responses in all treated patients, with CD4+T cells as the dominating responses. The magnitude of immune responses measured by IFN-γ ELISpot assay correlated with individual peptide doses. A significant correlation between the PIONEER quality score and induced T cell immunogenicity was detected, while better CRs correlated with both the number of immunogenic EVX-01 peptides and the PIONEER quality score. CONCLUSION: Immunization with EVX-01-CAF09b in addition to anti-PD-1 therapy was shown to be safe and well tolerated and elicit vaccine neoantigen-specific CD4+and CD8+ T cell responses at all dose levels. In addition, objective tumor responses were observed in 67% of patients. The results encourage further assessment of the antitumor efficacy of EVX-01 in combination with anti-PD-1 therapy.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Melanoma , Medicina de Precisão , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Metástase Neoplásica , Medicina de Precisão/métodos , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem
2.
Oncoimmunology ; 11(1): 2023255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036074

RESUMO

The majority of neoantigens arise from unique mutations that are not shared between individual patients, making neoantigen-directed immunotherapy a fully personalized treatment approach. Novel technical advances in next-generation sequencing of tumor samples and artificial intelligence (AI) allow fast and systematic prediction of tumor neoantigens. This study investigates feasibility, safety, immunity, and anti-tumor potential of the personalized peptide-based neoantigen vaccine, EVX-01, including the novel CD8+ T-cell inducing adjuvant, CAF®09b, in patients with metastatic melanoma (NTC03715985). The AI platform PIONEERTM was used for identification of tumor-derived neoantigens to be included in a peptide-based personalized therapeutic cancer vaccine. EVX-01 immunotherapy consisted of 6 administrations with 5-10 PIONEERTM-predicted neoantigens as synthetic peptides combined with the novel liposome-based Cationic Adjuvant Formulation 09b (CAF®09b) to strengthen T-cell responses. EVX-01 was combined with immune checkpoint inhibitors to augment the activity of EVX-01-induced immune responses. The primary endpoint was safety, exploratory endpoints included feasibility, immunologic and objective responses. This interim analysis reports the results from the first dose-level cohort of five patients. We documented a short vaccine manufacturing time of 48-55 days which enabled the initiation of EVX-01 treatment within 60 days from baseline biopsy. No severe adverse events were observed. EVX-01 elicited long-lasting EVX-01-specific T-cell responses in all patients. Competitive manufacturing time was demonstrated. EVX-01 was shown to be safe and able to elicit immune responses targeting tumor neoantigens with encouraging early indications of a clinical and meaningful antitumor efficacy, warranting further study.


Assuntos
Vacinas Anticâncer , Melanoma , Antígenos de Neoplasias/genética , Inteligência Artificial , Humanos , Melanoma/tratamento farmacológico , Peptídeos
3.
Eur J Pharm Biopharm ; 87(3): 480-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24726978

RESUMO

One of the main reasons for the unmet medical need for mucosal vaccines is the lack of safe and efficacious mucosal adjuvants. The cationic liposome-based adjuvant system composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) is a versatile adjuvant that has shown potential for mucosal vaccination via the airways. The purpose of this study was to investigate the importance of the liposomal surface charge on the interaction with lung epithelial cells. Thus, the cationic DDA in the liposomes was subjected to a step-wise replacement with the zwitterionic distearoylphosphatidylcholine (DSPC). The liposomes were tested with the model protein antigen ovalbumin for the mucosal deposition, the effect on cellular viability and the epithelial integrity by using the two cell lines A549 and Calu-3, representing cells from the alveolar and the bronchiolar epithelium, respectively. The Calu-3 cells were cultured under different conditions, resulting in epithelia with a low and a high mucus secretion, respectively. A significantly larger amount of lipid and ovalbumin was deposited in the epithelial cell layer and in the mucus after incubation with the cationic liposomes, as compared to incubation with the neutral liposomes, which suggests that the cationic charge is important for the delivery. The integrity and the viability of the cells without a surface-lining mucus layer were decreased upon incubation with the cationic formulations, whereas the mucus appeared to retain the integrity and viability of the mucus-covered Calu-3 cells. Our in vitro results thus indicate that DDA/TDB liposomes might be efficiently and safely used as an adjuvant system for vaccines targeting the mucus-covered epithelium of the upper respiratory tract and the conducting airways.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Farmacêuticos/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Lipossomos/administração & dosagem , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Cátions/administração & dosagem , Cátions/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Epiteliais/imunologia , Glicolipídeos/administração & dosagem , Humanos , Lipídeos/administração & dosagem , Lipídeos/imunologia , Lipossomos/imunologia , Pulmão/imunologia , Muco/efeitos dos fármacos , Muco/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/imunologia , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/imunologia , Mucosa Respiratória/imunologia , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...