Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 35(4): 336-348, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35100008

RESUMO

The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
2.
Fungal Genet Biol ; 152: 103571, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015431

RESUMO

Pyrenophora tritici-repentis is an ascomycete fungus that causes tan spot of wheat. The disease has a worldwide distribution and can cause significant yield and quality losses in wheat production. The fungal pathogen is homothallic in nature, which means it can undergo sexual reproduction by selfing to produce pseudothecia on wheat stubble for seasonal survival. Since homothallism precludes the development of bi-parental fungal populations, no genetic linkage map has been developed for P. tritici-repentis for mapping and map-based cloning of fungal virulence genes. In this work, we created two heterothallic strains by deleting one of the mating type genes in each of two parental isolates 86-124 (race 2) and AR CrossB10 (a new race) and developed a bi-parental fungal population between them. The draft genome sequences of the two parental isolates were aligned to the Pt-1C-BFP reference sequence to mine single nucleotide polymorphisms (SNPs). A total of 225 SNP markers were developed for genotyping the entire population. Additionally, 75 simple sequence repeat, and two gene markers were also developed and used in the genotyping. The resulting linkage map consisted of 13 linkage groups spanning 5,075.83 cM in genetic distance. Because the parental isolate AR CrossB10 is a new race and produces Ptr ToxC, it was sequenced using long-read sequencing platforms and de novo assembled into contigs. The majority of the contigs were further anchored into chromosomes with the aid of the linkage maps. The whole genome comparison of AR CrossB10 to the reference genome of M4 revealed a few chromosomal rearrangements. The genetic linkage map and the new AR CrossB10 genome sequence are valuable tools for gene cloning in P. tritici-repentis.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Ligação Genética , Micotoxinas/genética , Mapeamento Cromossômico , Marcadores Genéticos , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Virulência/genética
3.
Front Plant Sci ; 9: 1616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467511

RESUMO

Aegilops markgrafii (Greuter) Hammer is an important source of genes for resistance to abiotic stresses and diseases in wheat (Triticum aestivum L.). A series of six wheat 'Alcedo'-Ae. markgrafii chromosome disomic addition lines, designated as AI(B), AII(C), AIII(D), AV(E), AIV(F), and AVIII(G) carrying the Ae. markgrafii chromosomes B, C, D, E, F, and G, respectively, were tested with SSR markers to establish homoeologous relationships to wheat and identify markers useful in chromosome engineering. The addition lines were evaluated for resistance to rust and powdery mildew diseases. The parents Alcedo and Ae. markgrafii accession 'S740-69' were tested with 1500 SSR primer pairs and 935 polymorphic markers were identified. After selecting for robust markers and confirming the polymorphisms on the addition lines, 132 markers were considered useful for engineering and establishing homoeologous relationships. Based on the marker analysis, we concluded that the chromosomes B, C, D, E, F, and G belong to wheat homoeologous groups 2, 5, 6, 7, 3, and 4, respectively. Also, we observed chromosomal rearrangements in several addition lines. When tested with 20 isolates of powdery mildew pathogen (Blumeria graminis f. sp. tritici) from five geographic regions of the United States, four addition lines [AIII(D), AV(E), AIV(F), and AVIII(G)] showed resistance to some isolates, with addition line AV(E) being resistant to 19 of 20 isolates. The addition lines were tested with two races (TDBJ and TNBJ) of the leaf rust pathogen (Puccinia triticina), and only addition line AI(B) exhibited resistance at a level comparable to the Ae. markgrafii parent. Addition lines AII(C) and AIII(D) had been previously identified as resistant to the Ug99 race group of the stem rust pathogen (Puccinia graminis f. sp. tritici). The addition lines were also tested for resistance to six United States races (PSTv-4, PSTv-14, PSTv-37, PSTv-40, PSTv-51, and PSTv-198) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici); we found no resistance either in Alcedo or any of the addition lines. The homoeologous relationships of the chromosomes in the addition lines, molecular markers located on each chromosome, and disease resistance associated with each chromosome will allow for chromosome engineering of the resistance genes.

4.
Fungal Genet Biol ; 109: 16-25, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29050833

RESUMO

The ascomycete Pyrenophora tritici-repentis (Ptr) is an important fungal pathogen worldwide that causes tan spot of wheat. The fungus is self-fertile because each isolate contains both mating type (MAT) idiomorphs. In this work, we developed knockouts of the MAT genes in Ptr and tested fertility of the knockout strains and outcrossing between the knockout strains carrying the opposite mating type. The fungal strains with deletions of either MAT1-1-1 or MAT1-2-1 did not form mature pseudothecia making them functionally heterothallic. The cross between the heterothallic strains of the same isolate (86-124) was fully fertile with the only difference compared to the homothallic wild type strain being the slightly lower percentage of pseudothecium formation. However, the cross between 86-124 (race 2, ToxA-containing isolate) and DW5 (race 5, ToxB-containing isolate) was partially fertile and had fewer mature pseudothecia. Furthermore, most mature asci produced only two or four instead of eight functional ascospores. A collection of ascospores from this cross was obtained and genotyped for the presence of the ToxA, ToxB and MAT genes as well as simple sequence repeat markers. The segregation of these genes and markers and recombination of different allele types at these loci was observed. This work clearly demonstrates that the fungus requires both MAT genes for sexual production and can undergo outcrossing and sexual recombination. It also establishes a new and practical way for further characterizing fungal virulence in Ptr through the development of segregating fungal populations and subsequent genetic analysis.


Assuntos
Ascomicetos/patogenicidade , Genes Fúngicos Tipo Acasalamento , Ascomicetos/genética , Cruzamentos Genéticos , Fertilidade , Técnicas de Silenciamento de Genes , Esporos Fúngicos , Virulência/genética
5.
Theor Appl Genet ; 130(6): 1267-1276, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28293708

RESUMO

KEY MESSAGE: Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.


Assuntos
Resistência à Doença/genética , Epistasia Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Ascomicetos , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
6.
Sci Adv ; 2(10): e1600822, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819043

RESUMO

Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic pathogens. The wheat Snn1 gene confers susceptibility to strains of the necrotrophic pathogen Parastagonospora nodorum that produce the SnTox1 protein. We report the positional cloning of Snn1, a member of the wall-associated kinase class of receptors, which are known to drive pathways for biotrophic pathogen resistance. Recognition of SnTox1 by Snn1 activates programmed cell death, which allows this necrotroph to gain nutrients and sporulate. These results demonstrate that necrotrophic pathogens such as P. nodorum hijack host molecular pathways that are typically involved in resistance to biotrophic pathogens, revealing the complex nature of susceptibility and resistance in necrotrophic and biotrophic pathogen interactions with plants.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Triticum , Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Triticum/enzimologia , Triticum/microbiologia
7.
Theor Appl Genet ; 129(5): 897-908, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26796533

RESUMO

KEY MESSAGE: We identified a major QTL conferring race-nonspecific resistance and revealed its relationships with race-specific interactions in the wheat- Pyrenophora tritici-repentis pathosystem. Tan spot, caused by the fungus Pyrenophora tritici-repentis (Ptr), is a destructive disease of wheat worldwide. The disease system is known to include inverse gene-for-gene, race-specific interactions involving the recognition of fungal-produced necrotrophic effectors (NEs) by corresponding host sensitivity genes. However, quantitative trait loci (QTLs) conferring race-nonspecific resistance have also been identified. In this work, we identified a major race-nonspecific resistance QTL and characterized its genetic relationships with the NE-host gene interactions Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1 in a recombinant inbred wheat population derived from the cross between 'Louise' and 'Penawawa.' Both parental lines were sensitive to Ptr ToxA, but Penawawa and Louise were highly resistant and susceptible, respectively, to conidial inoculations of all races. Resistance was predominantly governed by a major race-nonspecific QTL on chromosome arm 3BL for resistance to all races. Another significant QTL was detected at the distal end of chromosome arm 1AS for resistance to the Ptr ToxC-producing isolates, which corresponded to the known location of the Tsc1 locus. The effects of the 3B and 1A QTLs were largely additive, and the 3B resistance QTL was epistatic to the Ptr ToxA-Tsn1 interaction. Resistance to race 2 in F1 plants was completely dominant; however, race 3-inoculated F1 plants were only moderately resistant because they developed chlorosis presumably due to the Ptr ToxC-Tsc1 interaction. This work provides further understanding of genetic resistance in the wheat-tan spot system as well as important guidance for tan spot resistance breeding.


Assuntos
Ascomicetos , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Ligação Genética , Endogamia , Doenças das Plantas/microbiologia , Especificidade da Espécie
8.
Mol Genet Genomics ; 291(1): 107-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26187026

RESUMO

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general.


Assuntos
Genes de Plantas/genética , Marcadores Genéticos/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Ascomicetos/genética , Brachypodium/genética , Brachypodium/microbiologia , Mapeamento Cromossômico/métodos , Etiquetas de Sequências Expressas/metabolismo , Proteínas Fúngicas/genética , Genoma de Planta/genética , Repetições de Microssatélites/genética , Mutação/genética , Micotoxinas/genética , Oryza/genética , Oryza/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
9.
Theor Appl Genet ; 128(12): 2367-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26260850

RESUMO

KEY MESSAGE: A robust and diagnostic STS marker for stem rust resistance gene Sr47 was developed and validated for marker-assisted selection. Stem rust (caused by Puccinia graminis f. sp. tritici, Pgt) resistance gene Sr47, originally transferred from Aegilops speltoides to durum wheat (Triticum turgidum subsp. durum) line DAS15, confers a high level of resistance to Pgt race TTKSK (Ug99). Recently, the durum Rusty 5D(5B) substitution line was used to reduce the Ae. speltoides segment, and the resulting lines had Sr47 on small Ae. speltoides segments on wheat chromosome arm 2BL. The objective of this study was to develop a robust marker for marker-assisted selection of Sr47. A 200-kb segment of the Brachypodium distachyon genome syntenic with the Sr47 region was used to identify wheat expressed sequence tags (ESTs) homologous to the B. distachyon genes. The wheat EST sequences were then used to develop sequence-tagged site (STS) markers. By analyzing the markers for polymorphism between Rusty and DAS15, we identified a co-dominant STS marker, designated as Xrwgs38, which amplified 175 and 187 bp fragments from wheat chromosome 2B and Ae. speltoides chromosome 2S segments, respectively. The marker co-segregated with the Ae. speltoides segments carrying Sr47 in the families from four BC2F1 plants, including the parent plants for durum lines RWG35 and RWG36 with the pedigree of Rusty/3/Rusty 5D(5B)/DAS15//47-1 5D(5B). Analysis of 62 durum and common wheat cultivars/lines lacking the Sr47 segment indicated that they all possessed the 175-bp allele of Xrwgs38, indicating that it was diagnostic for the small Ae. speltoides segment carrying Sr47. This study demonstrated that Xrwgs38 will facilitate the selection of Sr47 in durum and common wheat breeding.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética , Basidiomycota/patogenicidade , Etiquetas de Sequências Expressas , Genótipo , Melhoramento Vegetal/métodos , Doenças das Plantas/microbiologia , Seleção Genética , Triticum/microbiologia
10.
Plant Genome ; 8(2): eplantgenome2015.02.0007, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228297

RESUMO

Parastagonospora (syn. ana, Stagonospora; teleo, Phaeosphaeria) nodorum (Berk.) Quaedvleig, Verkley & Crous is a necrotrophic fungal pathogen that causes the disease Septoria nodorum blotch (SNB) on wheat (Triticum aestivum L. subsp. aestivum). The fungus produces necrotrophic effectors (NEs) that cause cell death when recognized by corresponding host genes, which ultimately leads to disease. To date, eight host gene-NE interactions have been described in the wheat-P. nodorum system. Here, we report the identification and partial characterization of a ninth interaction involving a P. nodorum-produced NE designated SnTox7 and a wheat gene designated Snn7. SnTox7 is a small protein with an estimated size less than 30 kDa and largely resistant to heat and chemical treatment. The Snn7 gene governs sensitivity to SnTox7 and was delineated to a 2.7-cM interval on the long arm of wheat chromosome 2D. The Snn7-SnTox7 interaction explained 33% of the variation in disease among a segregating population, indicating that the interaction plays a prominent role in the development of SNB. The Snn7 sensitivity allele was identified in the hexaploid wheat cultivar Timstein, but evaluation of a set of 52 hexaploid lines of diverse origin indicated that few genotypes harbored a functional Snn7 allele, thus indicating that Snn7 is relatively rare. The identification of the Snn7-SnTox7 interaction adds to our knowledge of the wheat-P. nodorum pathosystem, which has become a model for necrotrophic specialist fungal pathogens and their interactions with plants leading to necrotrophic effector-triggered susceptibility.

11.
Theor Appl Genet ; 128(3): 431-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25523501

RESUMO

KEY MESSAGE: Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Poaceae/genética , Basidiomycota , Cruzamento , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Seleção Genética , Sitios de Sequências Rotuladas
12.
Proc Natl Acad Sci U S A ; 108(46): 18737-42, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042872

RESUMO

The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.


Assuntos
Cromossomos/genética , Evolução Molecular , Genoma de Planta , Poliploidia , Triticum/genética , Regiões 3' não Traduzidas , Alelos , Éxons , Duplicação Gênica , Íntrons , Modelos Genéticos , Mutação , Fenótipo , Ploidias , RNA Mensageiro/metabolismo
13.
Mol Plant Microbe Interact ; 24(12): 1419-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21770771

RESUMO

Most research on host?pathogen interactions is focused on mechanisms of resistance, but less is known regarding mechanisms of susceptibility. The wheat?Stagonospora nodorum pathosystem involves pathogen-produced effectors, also known as host-selective toxins, that interact with corresponding dominant host genes to cause disease. Recognition of the S. nodorum effectors SnToxA and SnTox2 is mediated by the wheat genes Tsn1 and Snn2, respectively. Here, we inoculated a population of wheat recombinant inbred lines that segregates for Tsn1 and Snn2 with conidia from two S. nodorum isolates, Sn4 and Sn5, which both produce SnToxA and SnTox2 to compare the effects of compatible Tsn1?SnToxA and Snn2?SnTox2 interactions between the two isolates. Genetic analysis revealed that the two interactions contribute equally to disease caused by isolate Sn4 but the Tsn1?SnToxA interaction contributed substantially more to disease conferred by Sn5 than did the Snn2?SnTox2 interaction. Sequence analysis of the SnToxA locus from Sn4 and Sn5 indicated that they were 99.5% identical, with no polymorphisms in the coding region or the predicted promoters. Analysis of transcription levels showed that expression levels of SnToxA peaked at 26 h postinoculation for both isolates but SnToxA expression in Sn5 was more than twice that of Sn4. This work demonstrates that necrotrophic effectors of different isolates can be expressed at different levels in planta, and that higher levels of expression lead to increased levels of disease in the wheat?S. nodorum pathosystem.


Assuntos
Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Micotoxinas/metabolismo , Doenças das Plantas/genética , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Sequência de Bases , Suscetibilidade a Doenças , Genes de Plantas/genética , Genótipo , Dados de Sequência Molecular , Micotoxinas/genética , Micotoxinas/isolamento & purificação , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Análise de Regressão , Alinhamento de Sequência , Análise de Sequência de DNA , Esporos Fúngicos/fisiologia , Fatores de Tempo , Triticum/genética
14.
Mol Plant Pathol ; 12(3): 289-98, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21356000

RESUMO

A high-throughput RNA-mediated gene silencing system was developed for Cochliobolus sativus (anamorph: Bipolaris sorokiniana), the causal agent of spot blotch, common root rot and black point in barley and wheat. The green fluorescent protein gene (GFP) and the proteinaceous host-selective toxin gene (ToxA) were first introduced into C. sativus via the polyethylene glycol (PEG)-mediated transformation method. Transformants with a high level of expression of GFP or ToxA were generated. A silencing vector (pSGate1) based on the Gateway cloning system was developed and used to construct RNA interference (RNAi) vectors. Silencing of GFP and ToxA in the transformants was demonstrated by transformation with the RNAi construct expressing hairpin RNA (hpRNA) of the target gene. The polyketide synthase gene (CsPKS1), involved in melanin biosynthesis pathways in C. sativus, was also targeted by transformation with the RNAi vector (pSGate1-CsPKS1) encoding hpRNA of the CsPKS1 gene. The transformants with pSGate1-CsPKS1 exhibited an albino phenotype or reduced melanization, suggesting effective silencing of the endogenous CsPKS1 in C. sativus. Sectors exhibiting the wild-type phenotype of the fungus appeared in some of the CsPKS1-silenced transformants after subcultures as a result of inactivation or deletions of the RNAi transgene. The gene silencing system established provides a useful tool for functional genomics studies in C. sativus and other filamentous fungi.


Assuntos
Ascomicetos/genética , Grão Comestível/microbiologia , Técnicas Genéticas , Interferência de RNA , Ascomicetos/crescimento & desenvolvimento , Bioensaio , Southern Blotting , Contagem de Colônia Microbiana , Regulação da Expressão Gênica , Genes Fúngicos/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Micotoxinas/genética , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética
15.
Plant J ; 65(1): 27-38, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21175887

RESUMO

The pathogen Stagonospora nodorum produces multiple effectors, also known as host-selective toxins (HSTs), that interact with corresponding host sensitivity genes in an inverse gene-for-gene manner to cause the disease Stagonospora nodorum blotch (SNB) in wheat. In this study, a sensitivity gene was identified in Aegilops tauschii, the diploid D-genome donor of common wheat. The gene was mapped to the short arm of chromosome 5D and mediated recognition of the effector SnTox3, which was previously shown to be recognized by the wheat gene Snn3 on chromosome arm 5BS. Comparative mapping suggested that Snn3 and the gene on 5DS are probably homoeologous and derived from a common ancestor. Therefore, we propose to designate these genes as Snn3-B1 and Snn3-D1, respectively. Compatible Snn3-D1-SnTox3 interactions resulted in more severe necrosis in both effector infiltration and spore inoculation experiments than compatible Snn3-B1-SnTox3 interactions, indicating that Snn3-B1 and Snn3-D1 may have different affinities in SnTox3 recognition or signal transduction. Wheat bin-mapped expressed sequence tags and good levels of collinearity among the wheat Snn3 regions, rice (Oryza sativa), and Brachypodium distachyon were exploited for saturation and fine mapping of the Snn3-D1 locus. Markers delineating the Snn3-D1 locus to a 1.4 cM interval will be useful for initiating positional cloning. Further characterization of how these homoeologous genes mediate recognition of the same pathogen effector should enhance understanding of host manipulation by necrotrophic pathogens in causing disease.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Triticum/microbiologia , Brachypodium/genética , Frequência do Gene , Ligação Genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética
16.
Proc Natl Acad Sci U S A ; 107(30): 13544-9, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624958

RESUMO

Plant disease resistance is often conferred by genes with nucleotide binding site (NBS) and leucine-rich repeat (LRR) or serine/threonine protein kinase (S/TPK) domains. Much less is known about mechanisms of susceptibility, particularly to necrotrophic fungal pathogens. The pathogens that cause the diseases tan spot and Stagonospora nodorum blotch on wheat produce effectors (host-selective toxins) that induce susceptibility in wheat lines harboring corresponding toxin sensitivity genes. The effector ToxA is produced by both pathogens, and sensitivity to ToxA is governed by the Tsn1 gene on wheat chromosome arm 5BL. Here, we report the cloning of Tsn1, which was found to have disease resistance gene-like features, including S/TPK and NBS-LRR domains. Mutagenesis revealed that all three domains are required for ToxA sensitivity, and hence disease susceptibility. Tsn1 is unique to ToxA-sensitive genotypes, and insensitive genotypes are null. Sequencing and phylogenetic analysis indicated that Tsn1 arose in the B-genome diploid progenitor of polyploid wheat through a gene-fusion event that gave rise to its unique structure. Although Tsn1 is necessary to mediate ToxA recognition, yeast two-hybrid experiments suggested that the Tsn1 protein does not interact directly with ToxA. Tsn1 transcription is tightly regulated by the circadian clock and light, providing further evidence that Tsn1-ToxA interactions are associated with photosynthesis pathways. This work suggests that these necrotrophic pathogens may thrive by subverting the resistance mechanisms acquired by plants to combat other pathogens.


Assuntos
Ascomicetos/fisiologia , Genes de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiologia , Sequência de Aminoácidos , Ascomicetos/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Dados de Sequência Molecular , Mutação , Micotoxinas/genética , Micotoxinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Triticum/classificação , Técnicas do Sistema de Duplo-Híbrido
17.
PLoS Pathog ; 5(9): e1000581, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19806176

RESUMO

The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum-wheat interaction, as well as vital information for the general characterization of necrotroph-plant interactions.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/fisiologia , Micotoxinas/fisiologia , Doenças das Plantas/microbiologia , Triticum/genética , Sequência de Aminoácidos , Ascomicetos/metabolismo , Sequência de Bases , Southern Blotting , Ditiotreitol , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Variação Genética , Interações Hospedeiro-Patógeno/genética , Dados de Sequência Molecular , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/metabolismo , Pichia/genética , Pichia/metabolismo , Doenças das Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Triticum/microbiologia , Virulência
18.
Mol Plant Microbe Interact ; 22(9): 1056-68, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19656041

RESUMO

The toxin sensitivity gene Tsn1 interacts with Ptr ToxA (ToxA), a host-selective toxin produced by the necrotrophic fungus Pyrenophora tritici-repentis. The molecular mechanisms associated with cell death in sensitive wheat cultivars following ToxA application are not well understood. To address this question, we used the Affymetrix GeneChip Wheat Genome Array to compare gene expression in a sensitive wheat cultivar possessing the Tsn1 gene with the insensitive wheat cv. Nec103, which lacks the Tsn1 gene. This analysis was performed at early timepoints after infiltration with ToxA (e.g., 0.5 to 12 h postinfiltration [hpi]); at this time, ToxA is known to internalize into mesophyll cells without visible cell death symptoms. Gene expression also was monitored at later timepoints (24 to 48 hpi), when ToxA causes extensive damage in cellular compartments and visible cell death. At both early and late timepoints, numerous defense-related genes were induced (2- to 197-fold increases) and included genes involved in the phenylpropanoid pathway, lignification, and the production of reactive oxygen species (ROS). Furthermore, a subset of host genes functioning in signal transduction, metabolism, and as transcription factors was induced as a consequence of the Tsn1-ToxA interaction. Nine genes known to be involved in the host defense response and signaling pathways were selected for analysis by quantitative real-time polymerase chain reaction, and the expression profiles of these genes confirmed the results obtained in microarray experiments. Histochemical analyses of a sensitive wheat cultivar showed that H(2)O(2) was present in leaves undergoing cell death, indicating that ROS signaling is a major event involved in ToxA-mediated cell death. The results suggest that recognition of ToxA via Tsn1 triggers transcriptional reprogramming events similar to those reported for avirulence-resistance gene interactions, and that host-derived genes play an important role in the modulation of susceptibility to P. tritici-repentis.


Assuntos
Ascomicetos/metabolismo , Interações Hospedeiro-Patógeno , Micotoxinas/metabolismo , Proteínas de Plantas/metabolismo , Triticum/microbiologia , 3,3'-Diaminobenzidina/metabolismo , Transporte Biológico/genética , Morte Celular , Análise por Conglomerados , Azul Evans/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Triticum/citologia , Triticum/genética , Triticum/imunologia
19.
Nat Genet ; 38(8): 953-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16832356

RESUMO

New diseases of humans, animals and plants emerge regularly. Enhanced virulence on a new host can be facilitated by the acquisition of novel virulence factors. Interspecific gene transfer is known to be a source of such virulence factors in bacterial pathogens (often manifested as pathogenicity islands in the recipient organism) and it has been speculated that interspecific transfer of virulence factors may occur in fungal pathogens. Until now, no direct support has been available for this hypothesis. Here we present evidence that a gene encoding a critical virulence factor was transferred from one species of fungal pathogen to another. This gene transfer probably occurred just before 1941, creating a pathogen population with significantly enhanced virulence and leading to the emergence of a new damaging disease of wheat.


Assuntos
Transferência Genética Horizontal , Virulência/genética , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos , Ilhas Genômicas/genética , Humanos , Dados de Sequência Molecular , Micotoxinas/genética , Doenças das Plantas/microbiologia , Especificidade da Espécie , Triticum/microbiologia
20.
Genome ; 49(10): 1265-73, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17213908

RESUMO

The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at least 2 HSTs (SnTox1 and SnToxA). Sensitivity to SnTox1 is governed by the Snn1 gene on chromosome 1B in wheat. SnToxA is encoded by a gene with a high degree of similarity to the Ptr ToxA gene. Here, we evaluate toxin sensitivity and resistance to S. nodorum blotch (SNB) caused by Sn2000 in a recombinant inbred population that does not segregate for Snn1. Sensitivity to the Sn2000 toxin preparation cosegregated with sensitivity to Ptr ToxA at the Tsn1 locus. Tsn1-disrupted mutants were insensitive to both Ptr ToxA and SnToxA, suggesting that the 2 toxins are functionally similar, because they recognize the same locus in the host to induce necrosis. The locus harboring the tsn1 allele underlies a major quantitative trait locus (QTL) for resistance to SNB caused by Sn2000, and explains 62% of the phenotypic variation, indicating that the toxin is an important virulence factor for this fungus. The Tsn1 locus and several minor QTLs together explained 77% of the phenotypic variation. Therefore, the Tsn1-ToxA interaction in the wheat-S. nodorum pathosystem parallels that of the wheat-tan spot system, and the wheat Tsn1 gene serves as a major determinant for susceptibility to both SNB and tan spot.


Assuntos
Ascomicetos , Genes de Plantas , Micotoxinas/farmacologia , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/efeitos dos fármacos , Triticum/genética , Alelos , Ascomicetos/genética , Ascomicetos/metabolismo , Mapeamento Cromossômico , Micotoxinas/metabolismo , Fenótipo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...