Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 12(1): 4808, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376683

RESUMO

Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.


Assuntos
MicroRNAs/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Regeneração/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Células Cultivadas , Ecocardiografia , Regulação da Expressão Gênica , Humanos , Hiperplasia/genética , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Mol Ther ; 27(3): 584-599, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30559069

RESUMO

Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.


Assuntos
Cardiomiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Transplante de Coração/métodos , MicroRNAs/metabolismo , Miocárdio/metabolismo , Animais , Cardiomiopatias/genética , Proliferação de Células/fisiologia , Insuficiência Cardíaca/genética , Humanos , Camundongos , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
4.
Noncoding RNA Res ; 2(1): 27-37, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30159418

RESUMO

There is an urgent need to develop new therapeutic strategies to stimulate cardiac repair after damage, such as myocardial infarction. Already for more than a century scientist are intrigued by studying the regenerative capacity of the heart. While moving away from the old classification of the heart as a post-mitotic organ, and being inspired by the stem cell research in other scientific fields, mainly three different strategies arose in order to develop regenerative medicine, namely; the use of cardiac stem cells, reprogramming of fibroblasts into cardiomyocytes or direct stimulation of endogenous cardiomyocyte proliferation. MicroRNAs, known to play a role in orchestrating cell fate processes such as proliferation, differentiation and reprogramming, gained a lot of attention in this context the latest years. Indeed, several research groups have independently demonstrated that microRNA-based therapy shows promising results to induce heart tissue regeneration and improve cardiac pump function after myocardial injury. Nowadays, a whole new biotechnology field has been unveiled to investigate the possibilities for efficient, safe and specific delivery of microRNAs towards the heart.

5.
PLoS One ; 9(11): e111781, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375130

RESUMO

Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA) included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR) protocol for Insulin-Like Growth Factor 1 (IGF1) detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1) and Erythropoietin (EPO) transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.


Assuntos
Eritropoetina/genética , Fator de Crescimento Insulin-Like I/genética , Reação em Cadeia da Polimerase/métodos , Transgenes , Animais , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Humanos , Técnicas In Vitro , Injeções Intramusculares , Camundongos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...