Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 146: 102692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042609

RESUMO

Hospitals use medical cyber-physical systems (MCPS) more often to give patients quality continuous care. MCPS isa life-critical, context-aware, networked system of medical equipment. It has been challenging to achieve high assurance in system software, interoperability, context-aware intelligence, autonomy, security and privacy, and device certifiability due to the necessity to create complicated MCPS that are safe and efficient. The MCPS system is shown in the paper as a newly developed application case study of artificial intelligence in healthcare. Applications for various CPS-based healthcare systems are discussed, such as telehealthcare systems for managing chronic diseases (cardiovascular diseases, epilepsy, hearing loss, and respiratory diseases), supporting medication intake management, and tele-homecare systems. The goal of this study is to provide a thorough overview of the essential components of the MCPS from several angles, including design, methodology, and important enabling technologies, including sensor networks, the Internet of Things (IoT), cloud computing, and multi-agent systems. Additionally, some significant applications are investigated, such as smart cities, which are regarded as one of the key applications that will offer new services for industrial systems, transportation networks, energy distribution, monitoring of environmental changes, business and commerce applications, emergency response, and other social and recreational activities.The four levels of an MCPS's general architecture-data collecting, data aggregation, cloud processing, and action-are shown in this study. Different encryption techniques must be employed to ensure data privacy inside each layer due to the variations in hardware and communication capabilities of each layer. We compare established and new encryption techniques based on how well they support safe data exchange, secure computing, and secure storage. Our thorough experimental study of each method reveals that, although enabling innovative new features like secure sharing and safe computing, developing encryption approaches significantly increases computational and storage overhead. To increase the usability of newly developed encryption schemes in an MCPS and to provide a comprehensive list of tools and databases to assist other researchers, we provide a list of opportunities and challenges for incorporating machine intelligence-based MCPS in healthcare applications in our paper's conclusion.


Assuntos
Inteligência Artificial , Segurança Computacional , Humanos , Atenção à Saúde , Computação em Nuvem
2.
Environ Monit Assess ; 192(7): 436, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32548706

RESUMO

Agricultural soils form the backbone of the country's economic development. The increased population has not only reduced this treasure but also has affected the global climate at an alarming rate. Among the GHGs, emission of N2O due to agricultural activities is nowadays a global concern. Agricultural industries have increased N2O and CH4 by 17% in the atmosphere since 1990, with an average emanation rate of around 60 MT CO2 equivalents per year. Crop production accounts for approximately 50% of N2O emissions stemming from the farming community and discharges of fertilizer-induced N2O, for the time being estimated by IPCC at 1.24% of the N used ranging from 0.76% (rice) to 2.77% (maize). The concentration of atmospheric N2O has increased (60 ppb) after the industrial revolution, at the pace of 0.73 ppb year-1. Besides, soil structure, temperature, moisture, denitrifying microbial population, pH, C:N ratio, and relief are the factors which significantly enhance the N2O levels into the atmosphere. N2O as a GHG has more potential towards global warming than CO2 and has a very long residence period (115 years) in the atmosphere. N2O emission is nowadays a core issue which needs to be mitigated so as to decline the levels of its production in agricultural soils. However, priority should be given to the organic farming, management of soil chemistry, and phytoremediation to reduce the addition of N2O into the ambient air. Furthermore, deployment of N2O reductase in agricultural soils increases the efficiency of converting N2O to inert N2 which is a valuable strategy to reduce N2O production.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso/análise , Agricultura , Monitoramento Ambiental , Fertilizantes/análise , Metano/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA