Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 249: 126705, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37673162

RESUMO

A pH-sensitive bilayer electrospun nanofibrous mat containing both antibiotic (gentamicin sulfate, GEN) and non-steroidal anti-inflammatory (diclofenac sodium, DIC) drugs was fabricated for burn wound dressing by electrospinning technique, in which ethyl cellulose (EC) and ethyl cellulose/Eudragit S-100 (EC/ES-100) formed the top and bottom layers, respectively. The fabricated pH-sensitive bilayer electrospun nanofibrous mats were characterized from aspects of both structure and efficiency. Physicochemical properties were investigated via SEM, FTIR, and TGA. The swelling ratio and in vitro drug release of the fabricated nanofibrous mats were studied in different pHs. MTT was applied to assess the safety of the fiber mats. Finally, the in vivo efficiency of the designed pH-sensitive bilayer electrospun nanofibrous mats was examined on the male Wistar rats. Based on the histological analysis and wound healing test (in vivo animal experiments), the (ES100/EC-DIC/GEN)-(EC) pH-sensitive bilayer nanofibrous mat displayed faster wound healing than other bilayer nanofibrous mat. As a result, (ES100/EC-DIC/GEN)-(EC) bilayer nanofibrous mat with pH-responsion could accelerate the burn wound healing process via decreasing the adverse effects of GEN and DIC as topical antimicrobial and anti-inflammatory agents, receptively.


Assuntos
Nanofibras , Masculino , Ratos , Animais , Ratos Wistar , Celulose
2.
Int J Biol Macromol ; 116: 54-63, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29705108

RESUMO

The present project describes the facile preparation of novel pH-sensitive bio-nanocomposite hydrogel beads based on chitosan (CH) and GO-Ag nanohybrid particles for controlled release of anti-cancer drugs such as doxorubicin (DOX). The loading efficiency of doxorubicin into test beads was measured via UV-vis spectroscopy analysis and was found to be high. The formation of silver nanoparticles on the GO sheets and structural characteristics were evaluated via FT-IR, TEM, XRD, and SEM techniques. In addition, the antibacterial activity, swelling and drug release profiles of prepared nanocomposite beads were evaluated. Also, in vitro drug release test was performed in order to investigate the efficiency of CH/GO-Ag nanocomposite hydrogel beads as a drug carrier for controlled release of anti-cancer drugs such as doxorubicin (DOX). A more sustained and controlled drug release profile was observed for CH/GO-Ag nanocomposite hydrogel beads that enhanced by increasing the GO-Ag nanohybrid particles content.


Assuntos
Antibacterianos/química , Preparações de Ação Retardada/química , Doxorrubicina/química , Portadores de Fármacos/química , Hidrogéis/química , Nanocompostos/química , Prata/química , Antineoplásicos/química , Linhagem Celular Tumoral , Quitosana/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Grafite/química , Humanos , Nanopartículas Metálicas/química , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...