Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Clin Nutr ; 118(5): 938-955, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657523

RESUMO

BACKGROUND: There is increasing interest in the bidirectional relationship existing between the gut and brain and the effects of both oligofructose and 2'fucosyllactose to alter microbial composition and mood state. Yet, much remains unknown about the ability of oligofructose and 2'fucosyllactose to improve mood state via targeted manipulation of the gut microbiota. OBJECTIVES: We aimed to compare the effects of oligofructose and 2'fucosyllactose alone and in combination against maltodextrin (comparator) on microbial composition and mood state in a working population. METHODS: We conducted a 5-wk, 4-arm, parallel, double-blind, randomized, placebo-controlled trial in 92 healthy adults with mild-to-moderate levels of anxiety and depression. Subjects were randomized to oligofructose 8 g/d (plus 2 g/d maltodextrin); maltodextrin 10 g/d; oligofructose 8 g/d plus 2'fucosyllactose (2 g/d) or 2'fucosyllactose 2 g/d (plus 8 g/d maltodextrin). Changes in microbial load (fluorescence in situ hybridization-flow cytometry) and composition (16S ribosomal RNA sequencing) were the primary outcomes. Secondary outcomes included gastrointestinal sensations, bowel habits, and mood state parameters. RESULTS: There were significant increases in several bacterial taxa including Bifidobacterium, Bacteroides, Roseburia, and Faecalibacterium prausnitzii in both the oligofructose and oligofructose/2'fucosyllactose interventions (all P ≤ 0.05). Changes in bacterial taxa were highly heterogenous upon 2'fuscoyllactose supplementation. Significant improvements in Beck Depression Inventory, State Trait Anxiety Inventory Y1 and Y2, and Positive and Negative Affect Schedule scores and cortisol awakening response were detected across oligofructose, 2'fucosyllactose, and oligofructose/2'fucosyllactose combination interventions (all P ≤ 0.05). Both sole oligofructose and oligofructose/2'fuscosyllactose combination interventions outperformed both sole 2'fucosyllactose and maltodextrin in improvements in several mood state parameters (all P ≤ 0.05). CONCLUSION: The results of this study indicate that oligofructose and combination of oligofructose/2'fucosyllactose can beneficially alter microbial composition along with improving mood state parameters. Future work is needed to understand key microbial differences separating individual responses to 2'fucosyllactose supplementation. This trial was registered at clinicaltrials.gov as NCT05212545.


Assuntos
Frutanos , Inulina , Adulto , Humanos , Inulina/farmacologia , Frutanos/farmacologia , Hibridização in Situ Fluorescente , Prebióticos , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Bactérias , Método Duplo-Cego
3.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37653466

RESUMO

We explored the potential for the prebiotic oligofructose and prebiotic candidate 2'fucosyllactose, alone and in combination (50:50 blend) to induce physiologically relevant increases in neurotransmitter (γ-aminobutyric acid, serotonin, tryptophan, and dopamine) and organic acid (acetate, propionate, butyrate, lactate, and succinate) production as well as microbiome changes using anaerobic pH-controlled in vitro batch culture fermentations over 48 h. Changes in organic acid and neurotransmitter production were assessed by gas chromatography and liquid chromatography and, bacterial enumeration using fluorescence in situ hybridization, respectively. Both oligofructose and oligofructose/2'fucosyllactose combination fermentations induced physiologically relevant concentrations of γ-aminobutyric acid, acetate, propionate, butyrate, and succinate at completion (all P ≤ .05). A high degree of heterogeneity was seen amongst donors in both neurotransmitter and organic acid production in sole 2'FL fermentations suggesting a large responder/nonresponder status exists. Large increases in Bifidobacterium, Lactobacillus, and Bacteroides numbers were detected in oligofructose fermentation, smallest increases being detected in 2'fucosyllactose fermentation. Bacterial numbers in the combined oligofructose/2'fucosyllactose fermentation were closer to that of sole oligofructose. Our results indicate that oligofructose and oligofructose/2'fucosyllactose in combination have the potential to induce physiologically relevant increases in γ-aminobutyric and organic acid production along with offsetting the heterogenicity seen in response to sole 2'fucosyllactose supplementation.


Assuntos
Ácido Láctico , Propionatos , Hibridização in Situ Fluorescente , Butiratos , Dopamina , Prebióticos
4.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724263

RESUMO

AIMS: In this study, we explored the effects that the prebiotic inulin-type fructans, and prebiotic candidates: 2'fucosyllactose and ß-glucan from barley, singular and in combination had on microbial load, microbiome profile, and short-chain fatty acid production. This was carried out as a prescreening tool to determine combinations that could be taken forward for use in a human intervention trial. METHODS AND RESULTS: Effects of inulin-type fructans, 2'fucosyllactose and ß-glucan from barley in singular and combination on microbial load and profile and short-chain fatty acid production (SCFA) was conducted using in vitro batch culture fermentation over 48 h. Changes in microbial load and profile were assessed by fluorescence in situ hybridization flow cytometry (FISH-FLOW) and 16S rRNA sequencing, and changes in SCFA via gas chromatography. All substrates generated changes in microbial load and profile, achieving peak microbial load at 8 h fermentation with the largest changes in profile across all substrates in Bifidobacterium (Q < 0.05). This coincided with significant increases in acetate observed throughout fermentation (Q < 0.05). In comparison to sole supplementation combinations of oligofructose, ß-glucan and 2'fuscosyllactose induced significant increases in both propionate and butyrate producing bacteria (Roseburia and Faecalibacterium praunitzii), and concentrations of propionate and butyrate, the latter being maintained until the end of fermentation (all Q < 0.05). CONCLUSIONS: Combinations of oligofructose, with ß-glucan and 2'fucosyllactose induced selective changes in microbial combination and SCFA namely Roseburia, F. praunitzii, propionate and butyrate compared to sole supplementation.


Assuntos
Hordeum , beta-Glucanas , Humanos , Inulina/farmacologia , Inulina/metabolismo , Propionatos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Frutanos/farmacologia , Prebióticos , Butiratos , Fermentação , Hordeum/genética , Hordeum/metabolismo , Fezes/microbiologia
5.
Food Sci Nutr ; 11(1): 17-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655109

RESUMO

Inulin and oligofructose are classes of prebiotics belonging to a group of nondigestible carbohydrates referred to as inulin-type fructans. While short-chain fructooligosaccharides are enzymatically synthesized from the hydrolysis and transglycosylation of sucrose. Inulin-type fructans and short-chain fructooligosaccharides act as carbon sources for selective pathways supporting digestive health including altering the composition of the gut microbiota along with improving transit time. Due to their physicochemical properties, inulin-type fructans and short-chain fructooligosaccharides have been widely used in the food industry as partial replacements for both fat and sugar. Yet, levels of replacement need to be carefully considered as it may result in changes to physical and sensory properties that could be detected by consumers. Furthermore, it has been reported depending on the processing parameters used during production that inulin-type fructans and short-chain fructooligosaccharides may or may not undergo structural alterations. Therefore, this paper reviews the role of inulin-type fructans and short-chain fructooligosaccharides within the food industry as fat and sugar replacers and texture modifiers, their impact on final sensory properties, and to what degree processing parameters are likely to impact their functional properties.

6.
Microorganisms ; 10(7)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35889065

RESUMO

Numerous health benefits have been reported from the consumption of cranberry-derived products, and recent studies have identified bioactive polysaccharides and oligosaccharides from cranberry pomace. This study aimed to further characterize xyloglucan and pectic oligosaccharide structures from pectinase-treated cranberry pomace and measure the growth and short-chain fatty acid production of 86 Lactobacillus strains using a cranberry oligosaccharide fraction as the carbon source. In addition to arabino-xyloglucan structures, cranberry oligosaccharides included pectic rhamnogalacturonan I which was methyl-esterified, acetylated and contained arabino-galacto-oligosaccharide side chains and a 4,5-unsaturated function at the non-reducing end. When grown on cranberry oligosaccharides, ten Lactobacillus strains reached a final culture density (ΔOD) ≥ 0.50 after 24 h incubation at 32 °C, which was comparable to L. plantarum ATCC BAA 793. All strains produced lactic, acetic, and propionic acids, and all but three strains produced butyric acid. This study demonstrated that the ability to metabolize cranberry oligosaccharides is Lactobacillus strain specific, with some strains having the potential to be probiotics, and for the first time showed these ten strains were capable of growth on this carbon source. The novel cranberry pectic and arabino-xyloglucan oligosaccharide structures reported here combined with the Lactobacillus strains that can metabolize cranberry oligosaccharides and produce short-chain fatty acids, have excellent potential as health-promoting synbiotics.

7.
J Agric Food Chem ; 70(29): 9048-9056, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35830712

RESUMO

This study was conducted to investigate the sweetness intensity and the potential fecal microbiome modulation of galactooligosaccharides in combination with enzymatically modified mogrosides (mMV-GOS), both generated through a patented single-pot synthesis. Sweetness intensity was performed in vivo by trained sensory panelists. The impact on the human fecal microbiome was evaluated by in vitro pH-controlled batch fermentation, and bacterial populations and organic acid concentrations were measured by qPCR and GC-FID, respectively. Significant growth (p ≤ 0.05) during the fermentation at 10 h of bacterial populations includes Bifidobacterium (8.49 ± 0.44 CFU/mL), Bacteroides (9.73 ± 0.32 CFU/mL), Enterococcus (8.17 ± 0.42 CFU/mL), and Clostridium coccoides (6.15 ± 0.11 CFU/mL) as compared to the negative control counts for each bacterial group (7.94 ± 0.27, 7.84 ± 1.11, 7.52 ± 0.37, and 5.81 ± 0.08 CFU/mL, respectively) at the same time of fermentation. Likewise, the corresponding significant increase in production of SCFA in mMV-GOS at 10 h of fermentation, mainly seen in acetate (20.32 ± 2.56 mM) and propionate (9.49 ± 1.44 mM) production compared to a negative control at the same time (8.15 ± 1.97 and 1.86 ± 0.24 mM), is in line with a positive control (short-chain fructooligosaccharides; 46.74 ± 12.13 and 6.51 ± 1.91 mM, respectively) revealing a selective fermentation. In conclusion, these substrates could be considered as novel candidate prebiotic sweeteners, foreseeing a feasible and innovative approach targeting the sucrose content reduction in food. This new ingredient could provide health benefits when evaluated in human studies by combining sweetness and prebiotic fiber functionality.


Assuntos
Ácidos Graxos Voláteis , Prebióticos , Bactérias/genética , Bifidobacterium , Fezes/microbiologia , Fermentação , Humanos , Oligossacarídeos , Edulcorantes
8.
J Agric Food Chem ; 69(3): 1011-1019, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428404

RESUMO

Luo Han Guo fruit extract (Siraitia grosvenorii), mainly composed of mogroside V (50%), could be considered a suitable alternative to free sugars; however, its commercial applications are limited by its unpleasant off-notes. In the present work, a central composite design method was employed to optimize the transglycosylation of a mogroside extract using cyclodextrin glucosyltransferases (CGTases) from three different bacteriological sources (Paenibacillus macerans, Geobacillus sp., and Thermoanaerobacter sp.) considering various experimental parameters such as maltodextrin and mogroside concentration, temperature, time of reaction, enzymatic activity, and pH. Product structures were determined by liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Sensory analysis of glucosylated mogrosides showed an improvement in flavor attributes relevant to licorice flavor and aftereffect. Consequently, an optimum methodology was developed to produce new modified mogrosides more suitable when formulating food products as free sugar substitutes.


Assuntos
Proteínas de Bactérias/química , Cucurbitaceae/química , Glucosídeos/biossíntese , Glucosiltransferases/química , Extratos Vegetais/química , Edulcorantes/síntese química , Biocatálise , Cromatografia Líquida de Alta Pressão , Frutas/química , Geobacillus/enzimologia , Glucosídeos/química , Paenibacillus/enzimologia , Extratos Vegetais/síntese química , Espectrometria de Massas por Ionização por Electrospray , Edulcorantes/química , Thermoanaerobacter/enzimologia
9.
Foods ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256263

RESUMO

To improve flavor profiles, three cyclodextrin glucosyltransferases (CGTases) from different bacteriological sources, Paenibacillus macerans, Geobacillus sp. and Thermoanaerobacter sp., were used with an extract of steviol glycosides (SVglys) and rebaudioside A (RebA) as acceptor substrates in two parallel sets of reactions. A central composite experimental design was employed to maximize the concentration of glucosylated species synthesized, considering temperature, pH, time of reaction, enzymatic activity, maltodextrin concentration and SVglys/RebA concentration as experimental factors, together with their interactions. Liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-mass spectrometry (LC-ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to characterize and identify the chemical structures obtained along the optimization. To assess the impact on the sensory properties, a sensory analysis was carried out with a group of panelists that evaluated up to 16 sensorial attributes. CGTase transglucosylation of the C-13 and/or C-19 led to the addition of up to 11 glucose units to the steviol aglycone, which meant the achievement of enhanced sensory profiles due to a diminution of bitterness and licorice appreciations. The outcome herein obtained supposes the development of new potential alternatives to replace free sugars with low-calorie sweeteners with added health benefits.

10.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198169

RESUMO

Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491-502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers.IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Dieta Rica em Proteínas , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Prebióticos/administração & dosagem , Adulto , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Proteólise , Adulto Jovem
11.
Carbohydr Polym ; 236: 116076, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172889

RESUMO

Although most members of the genus Bifidobacterium are unable to utilize xylan as a carbon source, the growth of these species can be induced by this polysaccharide in the gut environment. This indicates a requirement for an association between Bifidobacterium species and some other members of gut microbiota. In this study, the role of cross-feeding between Bifidobacterium and Bacteroides species in the bifidogenic effect of xylan was investigated using in-vitro pure and co-culture fermentations. The pure culture studies showed that among the Bifidobacterium species tested, only Bifidobacterium animalis subsp. lactis was able to utilize xylooligosaccharides. The co-culture of this strain with Bacteroides species enabled it to grow in the presence of xylan. These results suggest that the ability of Bacteroides species to hydrolyze xylan could allow the proliferation of specific Bifidobacterium species in the gut through substrate cross-feeding.


Assuntos
Bacteroides/metabolismo , Bifidobacterium/metabolismo , Fermentação , Xilanos/metabolismo , Técnicas de Cocultura , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo
13.
Nat Rev Gastroenterol Hepatol ; 16(10): 642, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399728

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nat Rev Gastroenterol Hepatol ; 16(10): 605-616, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31296969

RESUMO

Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).


Assuntos
Gastroenteropatias/microbiologia , Gastroenteropatias/terapia , Microbioma Gastrointestinal/fisiologia , Prebióticos , Probióticos , Gastroenteropatias/fisiopatologia , Gastroenteropatias/prevenção & controle , Humanos , Prebióticos/microbiologia , Probióticos/uso terapêutico
15.
Appl Microbiol Biotechnol ; 103(16): 6463-6472, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267231

RESUMO

Adhesion ability to the host is a classical selection criterion for potential probiotic bacteria that could result in a transient colonisation that would help to promote immunomodulatory effects, as well as stimulate gut barrier and metabolic functions. In addition, probiotic bacteria have a potential protective role against enteropathogens through different mechanisms including production of antimicrobial compounds, reduction of pathogenic bacterial adhesion and competition for host cell binding sites. The competitive exclusion by probiotic bacteria has a beneficial effect not only on the gut but also in the urogenital tract and oral cavity. On the other hand, prebiotics may also act as barriers to pathogens and toxins by preventing their adhesion to epithelial receptors. In vitro studies with different intestinal cell lines have been widely used along the last decades to assess the adherence ability of probiotic bacteria and pathogen antagonism. However, extrapolation of these results to in vivo conditions still remains unclear, leading to the need of optimisation of more complex in vitro approaches that include interaction with the resident microbiota to address the current limitations. The aim of this mini review is to provide a comprehensive overview on the potential effect of the adhesive properties of probiotics and prebiotics on the host by focusing on the most recent findings related with adhesion and immunomodulatory and antipathogenic effect on human health.


Assuntos
Aderência Bacteriana , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Antibiose , Humanos , Fatores Imunológicos/administração & dosagem
17.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824442

RESUMO

Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians' feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds.IMPORTANCE Dietary protein intake is high in Western populations, which could result in potentially harmful metabolites in the gut from proteolysis. In an in vitro fermentation model, the addition of prebiotics reduced the negative consequences of high protein levels. Supplementation with a prebiotic resulted in a reduction of proteolytic metabolites in the model. A difference was seen in protein fermentation between omnivore and vegetarian gut microbiotas: bacteria from vegetarian donors grew more on soy and Quorn than on meat and casein, with reduced ammonia production. Bacteria from vegetarian donors produced less branched-chain fatty acids (BCFA).


Assuntos
Bactérias/metabolismo , Dieta , Microbioma Gastrointestinal , Prebióticos/administração & dosagem , Adulto , Fezes/microbiologia , Fermentação , Humanos , Pessoa de Meia-Idade , Proteólise , Adulto Jovem
18.
3 Biotech ; 9(3): 93, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800604

RESUMO

Copra meal hydrolysate (CMH) is obtained by hydrolyzing defatted copra meal with ß-mannanase from Bacillus circulans NT 6.7. In this study, we investigated the resistance of CMH to upper gastrointestinal tract digestion and the fecal fermentation profiles of CMH. Fecal slurries from four healthy human donors were used as inocula, and fructooligosaccharides (FOS) were used as a positive prebiotic control. Fecal batch cultures were performed at 37 °C under anaerobic conditions. Samples were collected at 0, 10, 24 and 34 h for bacterial enumeration via fluorescent in situ hybridization and organic acid (OA) analysis. In vitro gastric stomach and human pancreatic α-amylase simulations demonstrated that CMH was highly resistant to hydrolysis. Acetate was the main fermentation product of all the substrates. The proportions of acetate production of the total OAs from FOS, CMH and yeast mannooligosaccharides (MOS) after 34 h of fermentation did not significantly differ (69.76, 65.24 and 53.93%, respectively). At 24 h of fermentation, CMH promoted the growth of Lactobacillus and Bifidobacterium groups (P < 0.01) and did not significantly differ from the results obtained using FOS. The results of in vitro fecal fermentation of CMH indicate that CMH can promote the growth of beneficial bacteria.

19.
mSphere ; 4(1)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674645

RESUMO

Woody biomass is a sustainable and virtually unlimited source of hemicellulosic polysaccharides. The predominant hemicelluloses in softwood and hardwood are galactoglucomannan (GGM) and arabinoglucuronoxylan (AGX), respectively. Based on the structure similarity with common dietary fibers, GGM and AGX may be postulated to have prebiotic properties, conferring a health benefit on the host through specific modulation of the gut microbiota. In this study, we evaluated the prebiotic potential of acetylated GGM (AcGGM) and highly acetylated AGX (AcAGX) obtained from Norwegian lignocellulosic feedstocks in vitro In pure culture, both substrates selectively promoted the growth of Bifidobacterium, Lactobacillus, and Bacteroides species in a manner consistent with the presence of genetic loci for the utilization of ß-manno-oligosaccharides/ß-mannans and xylo-oligosaccharides/xylans. The prebiotic potential of AcGGM and AcAGX was further assessed in a pH-controlled batch culture fermentation system inoculated with healthy adult human feces. Results were compared with those obtained with a commercial fructo-oligosaccharide (FOS) mixture. Similarly to FOS, both substrates significantly increased (P < 0.05) the Bifidobacterium population. Other bacterial groups enumerated were unaffected with the exception of an increase in the growth of members of the Bacteroides-Prevotella group, Faecalibacterium prausnitzii, and clostridial cluster IX (P < 0.05). Compared to the other substrates, AcGGM promoted butyrogenic fermentation whereas AcAGX was more propiogenic. Although further in vivo confirmation is necessary, these results demonstrate that both AcGGM and AcAGX from lignocellulosic feedstocks can be used to direct the promotion of beneficial bacteria, thus exhibiting a promising prebiotic ability to improve or restore gut health.IMPORTANCE The architecture of the gut bacterial ecosystem has a profound effect on the physiology and well-being of the host. Modulation of the gut microbiota and the intestinal microenvironment via administration of prebiotics represents a valuable strategy to promote host health. This work provides insights into the ability of two novel wood-derived preparations, AcGGM and AcAGX, to influence human gut microbiota composition and activity. These compounds were selectively fermented by commensal bacteria such as Bifidobacterium, Bacteroides-Prevotella, F. prausnitzii, and clostridial cluster IX spp. This promoted the microbial synthesis of acetate, propionate, and butyrate, which are beneficial to the microbial ecosystem and host colonic epithelial cells. Thus, our results demonstrate potential prebiotic properties for both AcGGM and AcAGX from lignocellulosic feedstocks. These findings represent pivotal requirements for rationally designing intervention strategies based on the dietary supplementation of AcGGM and AcAGX to improve or restore gut health.


Assuntos
Bactérias/crescimento & desenvolvimento , Fibras na Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Mananas/metabolismo , Microbiota/efeitos dos fármacos , Prebióticos , Madeira/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Mananas/isolamento & purificação , Técnicas Microbiológicas
20.
Carbohydr Polym ; 199: 482-491, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143153

RESUMO

The suitability of artichoke and sunflower by-products as renewable sources of pectic compounds with prebiotic potential was evaluated by studying their ability to modulate the human faecal microbiota in vitro. Bacterial populations and short-chain fatty acid (SCFA) production were measured. Reduction of the molecular weight of artichoke pectin resulted in greater stimulation of the growth of Bifidobacterium, Lactobacillus and Bacteroides/Prevotella, whilst this effect was observed only in Bacteroides/Prevotella for sunflower samples. In contrast, the degree of methoxylation did not have any impact on fermentability properties or SCFA production, regardless of the origin of pectic compounds. Although further in vivo studies should be conducted, either pectin or enzymatically-modified pectin from sunflower and artichoke by-products might be considered as prebiotic candidates for human consumption showing similar ability to promote the in vitro growth of beneficial gut bacteria as compared to well-recognized prebiotics such as inulin or fructo-oligosaccharides.


Assuntos
Fermentação , Pectinas/metabolismo , Adulto , Bacteroides/crescimento & desenvolvimento , Bacteroides/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Citrus/química , Cynara scolymus/química , Enterococcus/crescimento & desenvolvimento , Enterococcus/metabolismo , Eubacterium/crescimento & desenvolvimento , Eubacterium/metabolismo , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Helianthus/química , Humanos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Masculino , Pectinas/química , Pectinas/isolamento & purificação , Prebióticos , Prevotella/crescimento & desenvolvimento , Prevotella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...