Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(6): 2800-2808, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289267

RESUMO

The scientific investigation of water-in-fuel emulsions spans over five decades; however, the widespread implementation of emulsion fuels in commercial settings has proven to be a challenging endeavor. This Perspective discusses the current status of the research pertaining to the formation and stability of emulsion fuels, technical and regulatory challenges, and opportunities. In particular, we highlight the need for a coordinated effort between the colloid and interface community and those actively investigating emissions, spray characteristics, and combustion aspects in internal combustion engines.

2.
Soft Matter ; 19(36): 7033-7045, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681684

RESUMO

The formation of reverse microemulsions (RMs) of spherical shape in the oil/water/surfactant ternary mixture at high molar ratio of water to surfactant (ω) is well established. Using dynamic light scattering, small-angle X-ray and neutron scattering, we elucidate the formation of non-spherical reverse microemulsions stabilised by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at ω = 10 and volume fractions of the dispersed phase, Φ, ranging from 0.005 to 0.20. In addition, we propose a strategy to tune the aspect ratio of non-spherical droplets and colloidal interactions by (i) varying the volume fraction of the dispersed phase (ii) changing the temperature, and (iii) by substituting the aliphatic oil with a mixture of aliphatic and aromatic hydrocarbons. This tunability of anisotropy along with a precise control of the interactions in the RMs, their ability to form spontaneously and their thermodynamic stability is crucial to provide a handle on reaction kinetics, synthesis of anisotropic nanoparticles as well as for their application as lubricants and viscosity modifiers.

3.
Adv Colloid Interface Sci ; 317: 102916, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269558

RESUMO

The formation of motion-induced dynamic adsorption layers of surfactants at the surface of rising bubbles is a widely accepted phenomenon. Although their existence and formation kinetics have been theoretically postulated and confirmed in many experimental reports, the investigations primarily remain qualitative in nature. In this paper we present results that, to the best of our knowledge, provide a first quantitative proof of the influence of the dynamic adsorption layer on drainage dynamics of a single foam film formed under dynamic conditions. This is achieved by measuring the drainage dynamics of single foam films, formed by air bubbles of millimetric size colliding against the interface between n-octanol solutions and air. This was repeated for a total of five different surfactant concentrations and two different liquid column heights. All three steps preceding foam film rupture, namely the rising, bouncing and drainage steps, were sequentially examined. In particular, the morphology of the single film formed during the drainage step was analyzed considering the rising and bouncing history of the bubble. It was found that, depending on the motion-induced state of adsorption layer at the bubble surface during the rising and the bouncing steps, single foam film drainage dynamics can be spectacularly different. Using Direct Numerical Simulations (DNS), it was revealed that surfactant redistribution can occur at the bubble surface as a result of the bouncing dynamics (approach-bounce cycles), strongly affecting the interfacial mobility, and leading to slower rates of foam film drainage. Since the bouncing amplitude directly depends on the rising velocity, which correlates in turn with the adsorption layer of surfactants at the bubble surface during the rising step, it is demonstrated that the lifetime of surface bubbles should intimately be related to the history of their formation.

4.
Langmuir ; 39(13): 4701-4711, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940278

RESUMO

The ability to modulate the size, the nanostructure, and the macroscopic properties of water-in-oil microemulsions is useful for a variety of technological scenarios. To date, diverse structures of water-in-alkane microemulsions stabilized by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) have been extensively studied. Even though the decisive parameter which dictates the phase behavior of micremulsions is the nature of the continuous phase, relatively very few reports are available on the structure and interactions in the microemulsions of aromatic oil. Here, we present a fundamental investigation on water-in-xylene microemulsions using small-angle neutron scattering (SANS) at a fixed molar ratio (ω) of water to AOT. We elucidate the microstructural changes in the water-AOT-xylene ternary system at dilute volume fractions (Φ = 0.005, 0.01, 0.03), where the droplet-droplet interactions are absent, to moderately concentrated systems (Φ = 0.05, 0.10, 0.15, and 0.20), where colloidal interactions become important. We also characterize the reverse microemulsions (RMs) for thermally induced microstructural changes at six different temperatures from 20 to 50 °C. Depending on the magnitude of Φ, the scattering data is found to be well described by considering the RMs as a dispersion of droplets (with a Schulz polydispersity) which interact as sticky hard spheres. We show that while the droplet diameter remains almost constant with increase in the volume fraction, the attractive interactions become prominent, much like the trends observed for water-in-alkane microemulsions. With increase in temperature, the RMs showed a marginal decrease in the droplet size but no pronounced dependence on the interactions was observed with the overall structure remaining intact. The fundamental study on a model system presented in this work is key to understanding the phase behavior of multiple component microemulsions as well as their design for applications at higher temperatures, where the structure of most RMs breaks down.

5.
ACS Omega ; 7(49): 44762-44771, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530246

RESUMO

The scarcity of fossil fuel has led to the recent worldwide commercialization of biodiesel-blended diesel. The benefits associated with emulsion fuels have encouraged researchers to study the blended emulsified fuels in diesel engines. Recent results show the effectiveness of blended emulsified fuels in terms of better fuel economy and less harmful emissions. Investigation on the stability of these blended emulsified fuels during storage in the fuel tank is equally crucial for commercialization and practical application. A systematic study on the storage stability of water in biodiesel/diesel blend nanoemulsions (nEs) is presented in this work. A mixture of two biodegradable surfactants, Span 80 and Tween 80, is used to stabilize the nEs. The nEs are formulated by subjecting a mixture of 5 vol % of each surfactant, 5 vol % of water, and 85 vol % of pure or blended diesel to high shear homogenization at 5000 rpm for 2 min. Storage stability of the emulsified fuels is studied for 65 days at 25 °C with the help of dynamic light scattering and viscosity measurements. The mean droplet size increases, and the stability decreases with an increase in the biodiesel concentration. The smallest mean droplet size is 32 nm for emulsified fuel using pure diesel, and these emulsions remain stable for 65 days. No macroscopic phase separation is observed for any sample aged for 24 days. A moderate increment in droplet sizes is observed during this period. The droplet size increases significantly when more than 15 vol % biodiesel is used in the fuel blend. Those samples show stratification after 65 storage days. An increment in the zero-shear viscosity of the samples over aging helps hinder the rapid coalescence of the droplets, thus preventing phase separation. Furthermore, the thermal stability of the samples is also investigated at elevated temperatures up to 50 °C. The nEs are found to be highly stable within this temperature range and showed a moderate change in mean droplets size, especially when the concentration of biodiesel in the emulsified fuel blend is less than 15 vol %.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...