Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985280

RESUMO

Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere.

2.
OMICS ; 19(12): 782-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26669713

RESUMO

The omics analyses of plants and the agrigenomics field offer the opportunity to better characterize our ecosystems. In this context, characterization of cytochrome P450 genes (CYP450s), which constitute one of the largest gene families in plants, is important. They play vital roles in biosynthesis of secondary metabolites, phytohormones as well as in detoxification of harmful chemicals. Tuberous roots of Coleus forskohlii accumulate forskolin, a potent and reversible activator of adenylate cyclase, as well as other related diterpenoids. Coleus forskohlii is also known to produce rosmarinic acid, genkwanin (7-O-methylapigenin), and guaiacol glycerin. We report here the isolation of CYP450s from C. forskohlii, expression profiling of CYP450s in different tissues, and how different elicitors/stresses regulate the expression of different CYP450 sequences. Degenerate primers, designed from the conserved regions of CYP450s, were used to amplify fragments from cDNA of C. forskohlii and a library was prepared. Sequences homologous to CYP450s were assembled into seven distinct gene fragments (CfP450C1-C7), belonging to seven CYP450 families. Expression profiling of CYP450s showed that the transcripts of CfP450C1, CfP450C4, CfP450C5, CfP450C6, and CfP450C7 were prominent in aerial tissues (flower, young leaf, and mature leaf), whereas expression of CfP450C3 was dominant in root and root tip. CfP450C2 showed higher expression in flowers and roots as compared to other tissues. Expression profiles of CYP450s, in response to different stresses (abscisic acid, methyl jasmonate, salicylic acid, 2, 4-dichloro-phenoxyacetic acid, UVA, and wounding) were also studied. This study has isolated CYP450s from C. forskohlii, and will help to understand their regulation as well as their functions. This is the first report on the isolation and expression analysis of CYP450s from this herb.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Plectranthus/genética , Transcriptoma , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/classificação , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos , Filogenia , Análise de Sequência de DNA , Estresse Fisiológico/genética
3.
Gene ; 558(1): 143-51, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25550044

RESUMO

Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum.


Assuntos
Antifúngicos/isolamento & purificação , Clonagem Molecular , Ocimum basilicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Ocimum basilicum/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Alinhamento de Sequência , Leveduras/efeitos dos fármacos
4.
Funct Integr Genomics ; 15(4): 413-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25595333

RESUMO

A fungal nitrilase gene from Fusarium proliferatum AUF-2 was cloned through reverse transcription-PCR. The open reading frame consisted of 903 bp and potentially encoded a protein of 301 amino acid residues with a theoretical molecular mass of 33.0 kDa. The encoding gene was expressed in Escherichia coli strain BL21 and the recombinant protein with His6-tag was purified to electrophoretic homogeneity. The purified enzyme exhibited optimal activity in the range of 35-40 °C and pH 8.0. EDTA, Mg(2+), Zn(2+), Ca(2+), Fe(2+), Fe(3+) and Mn(2+) stimulated hydrolytic activity, whereas Cu(2+), Co(2+) and Ni(2+) had inhibitory effect on nitrilase activity. Ag(+) ions showed a strong inhibitory effect on the recombinant nitrilase activity. This nitrilase was specific towards aliphatic, heterocyclic and aromatic nitriles. The kinetic parameters V(max) and K(m) for benzonitrile substrate were determined to be 14.6 µmol/min/mg protein and 1.55 mM, respectively. Homology modelling and molecular docking studies provided an insight into the substrate specificity and the proposed catalytic triad for recombinant nitrilase consisted of Glu-54, Lys-133 and Cys-175. This is the first report on the cloning and heterologous expression of nitrilase from Fusarium proliferatum.


Assuntos
Aminoidrolases/genética , Proteínas Fúngicas/genética , Fusarium/enzimologia , Nitrilas/metabolismo , Sequência de Aminoácidos , Aminoidrolases/química , Aminoidrolases/metabolismo , Biotransformação , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/genética , Dados de Sequência Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...