Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 98(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416244

RESUMO

A total of 120 Mesorhizobium strains collected from the central dry zone of Myanmar were analyzed in a pot experiment to evaluate nodulation and symbiotic effectiveness (SE%) in chickpea plants. Phylogenetic analyses revealed all strains belonged to the genus Mesorhizobium according to 16-23S rDNA IGS and the majority of chickpea nodulating rhizobia in Myanmar soils were most closely related to M. gobiense, M. muleiense, M. silamurunense, M. tamadayense and M. temperatum. Around two-thirds of the Myanmar strains (68%) were most closely related to Indian strain IC-2058 (CA-181), which is also most closely related to M. gobiense. There were no strains that were closely related to the cognate rhizobial species to nodulate chickpea: M. ciceri and M. mediterraneum. Strains with diverse 16S-23S rDNA IGS shared similar nodC and nifH gene sequences with chickpea symbionts. Detailed sequence analysis of nodC and nifH found that the strains in Myanmar were somewhat divergent from the group including M. ciceri and were more closely related to M. muleiense and IC-2058. A cross-continent analysis between strains isolated in Australia compared with Myanmar found that there was little overlap in species, where Australian soils were dominated with M. ciceri, M. temperatum and M. huakuii. The only co-occurring species found in both Myanmar and Australia were M. tamadayense and M. silumurunense. Continued inoculation with CC1192 may have reduced diversity of chickpea strains in Australian soils. Isolated strains in Australian and Myanmar had similar adaptive traits, which in some cases were also phylogenetically related. The genetic discrepancy between chickpea nodulating strains in Australia and Myanmar is not only due to inoculation history but to adaptation to soil conditions and crop management over a long period, and there has been virtually no loss of symbiotic efficiency over this time in strains isolated from soils in Myanmar.


Assuntos
Cicer , Mesorhizobium , Rhizobium , Austrália , DNA Bacteriano/genética , DNA Ribossômico , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Análise de Sequência de DNA , Solo , Simbiose
2.
Cell Discov ; 3: 17031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861277

RESUMO

Astragalus membranaceus, also known as Huangqi in China, is one of the most widely used medicinal herbs in Traditional Chinese Medicine. Traditional Chinese Medicine formulations from Astragalus membranaceus have been used to treat a wide range of illnesses, such as cardiovascular disease, type 2 diabetes, nephritis and cancers. Pharmacological studies have shown that immunomodulating, anti-hyperglycemic, anti-inflammatory, antioxidant and antiviral activities exist in the extract of Astragalus membranaceus. Therefore, characterising the biosynthesis of bioactive compounds in Astragalus membranaceus, such as Astragalosides, Calycosin and Calycosin-7-O-ß-d-glucoside, is of particular importance for further genetic studies of Astragalus membranaceus. In this study, we reconstructed the Astragalus membranaceus full-length transcriptomes from leaf and root tissues using PacBio Iso-Seq long reads. We identified 27 975 and 22 343 full-length unique transcript models in each tissue respectively. Compared with previous studies that used short read sequencing, our reconstructed transcripts are longer, and are more likely to be full-length and include numerous transcript variants. Moreover, we also re-characterised and identified potential transcript variants of genes involved in Astragalosides, Calycosin and Calycosin-7-O-ß-d-glucoside biosynthesis. In conclusion, our study provides a practical pipeline to characterise the full-length transcriptome for species without a reference genome and a useful genomic resource for exploring the biosynthesis of active compounds in Astragalus membranaceus.

3.
J Exp Bot ; 60(6): 1619-31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19386615

RESUMO

The movement of water into harvest-ripe grains of dormant and non-dormant genotypes of wheat (Triticum aestivum L.) was investigated using Magnetic Resonance Micro-Imaging (MRMI). Images of virtual sections, both longitudinal and transverse, throughout the grain were collected at intervals after the start of imbibition and used to reconstruct a picture of water location within the different grain tissues and changes over time. The observations were supplemented by the weighing measurements of water content and imbibition of grains in water containing I(2)/KI which stains starch and lipid, thereby acting as a marker for water. In closely related genotypes, with either a dormant or a non-dormant phenotype, neither the rate of increase in water content nor the pattern of water distribution within the grain was significantly different until 18 h, when germination became apparent in the non-dormant genotype. Water entered the embryo and scutellum during the very early stages of imbibition through the micropyle and by 2 h water was clearly evident in the micropyle channel. After 12 h of imbibition, embryo structures such as the coleoptile and radicle were clearly distinguished. Although water accumulated between the inner (seed coat) and outer (pericarp) layers of the coat surrounding the grain, there was no evidence for movement of water directly across the coat and into the underlying starchy endosperm.


Assuntos
Triticum/fisiologia , Água/metabolismo , Grão Comestível/química , Grão Comestível/genética , Grão Comestível/fisiologia , Germinação , Imageamento por Ressonância Magnética , Sementes/química , Sementes/genética , Sementes/fisiologia , Triticum/química , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...