Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 6468-6479, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35413193

RESUMO

High-temperature oxidation mechanisms of metallic nanoparticles have been extensively investigated; however, it is challenging to determine whether the kinetic modeling is applicable at the nanoscale and how the differences in nanoparticle size influence the oxidation mechanisms. In this work, we study thermal oxidation of pristine Ni nanoparticles ranging from 4 to 50 nm in 1 bar 1%O2/N2 at 600 °C using in situ gas-cell environmental transmission electron microscopy. Real-space in situ oxidation videos revealed an unexpected nanoparticle surface refacetting before oxidation and a strong Ni nanoparticle size dependence, leading to distinct structural development during the oxidation and different final NiO morphology. By quantifying the NiO thickness/volume change in real space, individual nanoparticle-level oxidation kinetics was established and directly correlated with nanoparticle microstructural evolution with specified fast and slow oxidation directions. Thus, for the size-dependent Ni nanoparticle oxidation, we propose a unified oxidation theory with a two-stage oxidation process: stage 1: dominated by the early NiO nucleation (Avrami-Erofeev model) and stage 2: the Wagner diffusion-balanced NiO shell thickening (Wanger model). In particular, to what extent the oxidation would proceed into stage 2 dictates the final NiO morphology, which depends on the Ni starting radius with respect to the critical thickness under given oxidation conditions. The overall oxidation duration is controlled by both the diffusivity of Ni2+ in NiO and the Ni in Ni self-diffusion. We also compare the single-particle kinetic curve with the collective one and discuss the effects of nanoparticle size differences on kinetic model analysis.

2.
Sci Rep ; 11(1): 19175, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584179

RESUMO

Synthetic homogeneous system known to date performing methane to methanol conversion using O2 as terminal oxidant is unique and based on copper complex with piperazine-based ligand (Cu3L in Fig. 1) in a medium of acetonitrile. Prior work have shown that in order to achieve catalytic turnover, hydrogen peroxide is needed to regenerate the active site. We show in this paper that reaction solvent based on organic nitrile decompose concurrently with methane activation and that in the absence of either acetonitrile, Cu complex or hydrogen peroxide, the catalytic turnover does not happen. We show in this manuscript that the direct methane oxidation to methanol might have been mediated by catalytic Radziszewski oxidation between acetonitrile and H2O2. Additionally we have discovered that in the absence of methane, peroxide mediated acetonitrile decomposition also makes methanol via a background reaction which was hitherto unknown.

3.
ACS Appl Mater Interfaces ; 12(42): 47389-47396, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962347

RESUMO

A mesoporous crystalline niobium oxide with tunable pore sizes was synthesized via the sol-gel-based inverse micelle method. The material shows a surface area of 127 m2/g, which is the highest surface area reported so far for crystalline niobium oxide synthesized by soft template methods. The material also has a monomodal pore size distribution with an average pore diameter of 5.6 nm. A comprehensive characterization of niobium oxide was performed using powder X-ray diffraction, Brunauer-Emmett-Teller, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, UV-vis, and X-ray photoelectron spectroscopy. The material acts as an environmentally friendly, solid acid catalyst toward hydration of alkynes under with excellent catalytic activity (99% conversion, 99% selectivity, and 4.39 h-1 TOF). Brønsted acid sites present in the catalyst were found to be responsible for the high catalytic activity. The catalyst was reusable up to five cycles without a significant loss of the activity.

4.
ACS Appl Mater Interfaces ; 12(5): 5990-5998, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31917542

RESUMO

A mesoporous molybdenum tungsten mixed metal oxide with high surface area (173 m2/g) was synthesized by using metal dissolution coupled with a surfactant assisted reverse micelle formation synthesis method. Comprehensive characterization of the mixed oxide was performed by using PXRD, Raman, BET, SEM, EDX, TEM, and XPS. Thus, the formation of α-Mo0.5W0.5O3 with a homogeneous distribution of Mo and W throughout the material was seen. Furthermore, multiple oxidation states of molybdenum (Mo6+ and Mo5+) and a single oxidation state of tungsten (W6+) were observed. The weak/moderate acidic sites present in the mixed metal oxide resulted in excellent catalytic properties toward the sp3-sp2 carbon-carbon coupling reactions. The coupling of benzyl alcohol and toluene was completed within 15 min at 110 °C with 99% yield.

5.
RSC Adv ; 9(56): 32665-32673, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529729

RESUMO

Octahedral molecular sieve (OMS-2) refers to a one-dimensional 2 × 2 framework of octahedral manganese oxo units based on the cryptomelane-type framework. Herein, we describe a niobium (Nb) substituted mixed metal oxide of Nb and Mn where the cryptomelane-type framework is retained. These materials are hydrothermally synthesized from the reaction of potassium permanganate, manganese sulfate, and homogeneous niobium(v) precursors. Niobium incorporation up to 31 mol% can be achieved without destroying the one dimensional 2 × 2 framework. The yields of the materials vary between 70 and 90%. These materials are analyzed by powder XRD, BET isotherm, TEM, SEM, XRF, and XPS studies. The synthesized materials show promising activity in selective oxidation of methanol to dimethoxymethane (DMM) at 200 °C. Normalized activity correlations followed the trend 21% Nb-OMS-2 > 15% Nb-OMS-2 > 31% Nb-OMS-2 > 68% Nb-OMS-2 > K-OMS-2. A fluctuation in methanol conversion was observed around 125-150 °C in most samples, suggesting this to be a catalytically important temperature regime when forming active sites for DMM production.

6.
Nanoscale ; 9(15): 5009-5018, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28383581

RESUMO

Manganese oxides of octahedral molecular sieve (OMS-2) type have important applications in oxidation catalysis, adsorption, and as battery materials. The synthesis methods employed determine their morphology and textural properties which markedly affect their catalytic activity. In this work, a room temperature ultrasonic atomization assisted synthesis of OMS-2 type materials is demonstrated. This synthesis differs from previously reported methods in that it is a simple, no-heat application that leads to a striking morphological characteristic of uniformly sized OMS-2 fibers and their self-assembly into dense as well as hollow spheres. Control of various parameters in the ultrasonic atomization assisted synthesis led to OMS-2 with high surface areas (between 136-160 m2 g-1) and mesoporosity. Catalytically these materials have higher activities in the oxidation of hydroxymethylfurfural (HMF), a bio-based chemical, (65% conversion of HMF vs. 14% with conventional OMS-2 catalyst) and a higher adsorption of lead from aqueous solutions (70% vs. 12% in conventional OMS-2 materials).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...