Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102793, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957375

RESUMO

In a recent paper by Sajindra et al. [1], the soil nutrient levels, specifically nitrogen, phosphorus, and potassium, in organic cabbage cultivation were predicted using a deep learning model. This model was designed with a total of four hidden layers, excluding the input and output layers, with each hidden layer meticulously crafted to contain ten nodes. The selection of the tangent sigmoid transfer function as the optimal activation function for the dataset was based on considerations such as the coefficient of correlation, mean squared error, and the accuracy of the predicted results. Throughout this study, the objective is to justify the tangent sigmoid transfer function and provide mathematical justification for the obtained results.•This paper presents the comprehensive methodology for the development of deep neural network for predict the soil nutrient levels.•Tangent Sigmoid transfer function usage is justified in predictions.•Methodology can be adapted to any similar real-world scenarios.

2.
PLoS One ; 19(6): e0303883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905194

RESUMO

Rice is a crucial crop in Sri Lanka, influencing both its agricultural and economic landscapes. This study delves into the complex interplay between economic indicators and rice production, aiming to uncover correlations and build prediction models using machine learning techniques. The dataset, spanning from 1960 to 2020, includes key economic variables such as GDP, inflation rate, manufacturing output, population, population growth rate, imports, arable land area, military expenditure, and rice production. The study's findings reveal the significant influence of economic factors on rice production in Sri Lanka. Machine learning models, including Linear Regression, Support Vector Machines, Ensemble methods, and Gaussian Process Regression, demonstrate strong predictive accuracy in forecasting rice production based on economic indicators. These results underscore the importance of economic indicators in shaping rice production outcomes and highlight the potential of machine learning in predicting agricultural trends. The study suggests avenues for future research, such as exploring regional variations and refining models based on ongoing data collection.


Assuntos
Aprendizado de Máquina , Oryza , Oryza/crescimento & desenvolvimento , Sri Lanka , Agricultura/economia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/economia , Produção Agrícola/economia , Máquina de Vetores de Suporte
3.
Sci Rep ; 14(1): 9889, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688985

RESUMO

Soil temperatures at both surface and various depths are important in changing environments to understand the biological, chemical, and physical properties of soil. This is essential in reaching food sustainability. However, most of the developing regions across the globe face difficulty in establishing solid data measurements and records due to poor instrumentation and many other unavoidable reasons such as natural disasters like droughts, floods, and cyclones. Therefore, an accurate prediction model would fix these difficulties. Uzbekistan is one of the countries that is concerned about climate change due to its arid climate. Therefore, for the first time, this research presents an integrated model to predict soil temperature levels at the surface and 10 cm depth based on climatic factors in Nukus, Uzbekistan. Eight machine learning models were trained in order to understand the best-performing model based on widely used performance indicators. Long Short-Term Memory (LSTM) model performed in accurate predictions of soil temperature levels at 10 cm depth. More importantly, the models developed here can predict temperature levels at 10 cm depth with the measured climatic data and predicted surface soil temperature levels. The model can predict soil temperature at 10 cm depth without any ground soil temperature measurements. The developed model can be effectively used in planning applications in reaching sustainability in food production in arid areas like Nukus, Uzbekistan.

4.
Sensors (Basel) ; 23(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37050741

RESUMO

Wetlands play a vital role in ecosystems. They help in flood accumulation, water purification, groundwater recharge, shoreline stabilization, provision of habitats for flora and fauna, and facilitation of recreation activities. Although wetlands are hot spots of biodiversity, they are one of the most endangered ecosystems on the Earth. This is not only due to anthropogenic activities but also due to changing climate. Many studies can be found in the literature to understand the water levels of wetlands with respect to the climate; however, there is a lack of identification of the major meteorological parameters affecting the water levels, which are much localized. Therefore, this study, for the first time in Sri Lanka, was carried out to understand the most important parameters affecting the water depth of the Colombo flood detention basin. The temporal behavior of water level fluctuations was tested among various combinations of hydro-meteorological parameters with the help of Artificial Neural Networks (ANN). As expected, rainfall was found to be the most impacting parameter; however, apart from that, some interesting combinations of meteorological parameters were found as the second layer of impacting parameters. The rainfall-nighttime relative humidity, rainfall-evaporation, daytime relative humidity-evaporation, and rainfall-nighttime relative humidity-evaporation combinations were highly impactful toward the water level fluctuations. The findings of this study help to sustainably manage the available wetlands in Colombo, Sri Lanka. In addition, the study emphasizes the importance of high-resolution on-site data availability for higher prediction accuracy.

5.
PLoS One ; 18(4): e0282847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099590

RESUMO

Hydrologic models to simulate river flows are computationally costly. In addition to the precipitation and other meteorological time series, catchment characteristics, including soil data, land use, land cover, and roughness, are essential in most hydrologic models. The unavailability of these data series challenged the accuracy of simulations. However, recent advances in soft computing techniques offer better approaches and solutions at less computational complexity. These require a minimum amount of data, while they reach higher accuracies depending on the quality of data sets. The Gradient Boosting Algorithms and Adaptive Network-based Fuzzy Inference System (ANFIS) are two such systems that can be used in simulating river flows based on the catchment rainfall. In this paper, the computational capabilities of these two systems were tested in simulated river flows by developing the prediction models for Malwathu Oya in Sri Lanka. The simulated flows were then compared with the ground-measured river flows for accuracy. Correlation of coefficient (R), Per cent-Bias (bias), Nash Sutcliffe Model efficiency (NSE), Mean Absolute Relative Error (MARE), Kling-Gupta Efficiency (KGE), and Root mean square error (RMSE) were used as the comparative indices between Gradient Boosting Algorithms and Adaptive Network-based Fuzzy Inference Systems. Results of the study showcased that both systems can simulate river flows as a function of catchment rainfalls; however, the Cat gradient Boosting algorithm (CatBoost) has a computational edge over the Adaptive Network Based Fuzzy Inference System (ANFIS). The CatBoost algorithm outperformed other algorithms used in this study, with the best correlation score for the testing dataset having 0.9934. The extreme gradient boosting (XGBoost), Light gradient boosting (LightGBM), and Ensemble models scored 0.9283, 0.9253, and 0.9109, respectively. However, more applications should be investigated for sound conclusions.


Assuntos
Monitoramento Ambiental , Redes Neurais de Computação , Monitoramento Ambiental/métodos , Sri Lanka , Água , Algoritmos , Lógica Fuzzy
6.
Sensors (Basel) ; 23(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905032

RESUMO

The rapidly changing climate affects an extensive spectrum of human-centered environments. The food industry is one of the affected industries due to rapid climate change. Rice is a staple food and an important cultural key point for Japanese people. As Japan is a country in which natural disasters continuously occur, using aged seeds for cultivation has become a regular practice. It is a well-known truth that seed quality and age highly impact germination rate and successful cultivation. However, a considerable research gap exists in the identification of seeds according to age. Hence, this study aims to implement a machine-learning model to identify Japanese rice seeds according to their age. Since agewise datasets are unavailable in the literature, this research implements a novel rice seed dataset with six rice varieties and three age variations. The rice seed dataset was created using a combination of RGB images. Image features were extracted using six feature descriptors. The proposed algorithm used in this study is called Cascaded-ANFIS. A novel structure for this algorithm is proposed in this work, combining several gradient-boosting algorithms such as XGBoost, CatBoost, and LightGBM. The classification was conducted in two steps. First, the seed variety was identified. Then, the age was predicted. As a result, seven classification models were implemented. The performance of the proposed algorithm was evaluated against 13 state-of-the-art algorithms. Overall, the proposed algorithm has a higher accuracy, precision, recall, and F1-score than the others. For the classification of variety, the proposed algorithm scored 0.7697, 0.7949, 0.7707, and 0.7862, respectively. The results of this study confirm that the proposed algorithm can be employed in the successful age classification of seeds.


Assuntos
Oryza , Humanos , Idoso , Oryza/química , Japão , Algoritmos , Sementes/química , Aprendizado de Máquina
7.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365987

RESUMO

Planning and decision-making are critical managerial functions involving the brain's executive functions. However, little is known about the effect of cerebral activity during long-time learning while planning and decision-making. This study investigated the impact of planning and decision-making processes in long-time learning, focusing on a cerebral activity before and after learning. The methodology of this study involves the Tower of Hanoi (ToH) to investigate executive functions related to the learning process. Generally, ToH is used to measure baseline performance, learning rate, offline learning (following overnight retention), and transfer. However, this study performs experiments on long-time learning effects for ToH solving. The participants were involved in learning the task over seven weeks. Learning progress was evaluated based on improvement in performance and correlations with the learning curve. All participants showed a significant improvement in planning and decision-making over seven weeks of time duration. Brain activation results from fMRI showed a statistically significant decrease in the activation degree in the dorsolateral prefrontal cortex, parietal lobe, inferior frontal gyrus, and premotor cortex between before and after learning. Our pilot study showed that updating information and shifting issue rules were found in the frontal lobe. Through monitoring performance, we can describe the effect of long-time learning initiated at the frontal lobe and then convert it to a task execution function by analyzing the frontal lobe maps. This process can be observed by comparing the learning curve and the fMRI maps. It was also clear that the degree of activation tends to decrease with the number of tasks, such as through the mid-phase and the end-phase of training. The elucidation of this structure is closely related to decision-making in human behavior, where brain dynamics differ between "thinking and behavior" during complex thinking in the early stages of training and instantaneous "thinking and behavior" after sufficient training. Since this is related to human learning, elucidating these mechanisms will allow the construction of a brain function map model that can be used universally for all training tasks.


Assuntos
Lobo Frontal , Resolução de Problemas , Humanos , Projetos Piloto , Lobo Frontal/fisiologia , Resolução de Problemas/fisiologia , Encéfalo/diagnóstico por imagem , Aprendizagem
8.
Sensors (Basel) ; 22(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35746183

RESUMO

Automated fruit identification is always challenging due to its complex nature. Usually, the fruit types and sub-types are location-dependent; thus, manual fruit categorization is also still a challenging problem. Literature showcases several recent studies incorporating the Convolutional Neural Network-based algorithms (VGG16, Inception V3, MobileNet, and ResNet18) to classify the Fruit-360 dataset. However, none of them are comprehensive and have not been utilized for the total 131 fruit classes. In addition, the computational efficiency was not the best in these models. A novel, robust but comprehensive study is presented here in identifying and predicting the whole Fruit-360 dataset, including 131 fruit classes with 90,483 sample images. An algorithm based on the Cascaded Adaptive Network-based Fuzzy Inference System (Cascaded-ANFIS) was effectively utilized to achieve the research gap. Color Structure, Region Shape, Edge Histogram, Column Layout, Gray-Level Co-Occurrence Matrix, Scale-Invariant Feature Transform, Speeded Up Robust Features, Histogram of Oriented Gradients, and Oriented FAST and rotated BRIEF features are used in this study as the features descriptors in identifying fruit images. The algorithm was validated using two methods: iterations and confusion matrix. The results showcase that the proposed method gives a relative accuracy of 98.36%. The Fruit-360 dataset is unbalanced; therefore, the weighted precision, recall, and FScore were calculated as 0.9843, 0.9841, and 0.9840, respectively. In addition, the developed system was tested and compared against the literature-found state-of-the-art algorithms for the purpose. Comparison studies present the acceptability of the newly developed algorithm handling the whole Fruit-360 dataset and achieving high computational efficiency.


Assuntos
Algoritmos , Frutas , Redes Neurais de Computação
9.
Sensors (Basel) ; 22(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458890

RESUMO

Hydropower stands as a crucial source of power in the current world, and there is a vast range of benefits of forecasting power generation for the future. This paper focuses on the significance of climate change on the future representation of the Samanalawewa Reservoir Hydropower Project using an architecture of the Cascaded ANFIS algorithm. Moreover, we assess the capacity of the novel Cascaded ANFIS algorithm for handling regression problems and compare the results with the state-of-art regression models. The inputs to this system were the rainfall data of selected weather stations inside the catchment. The future rainfalls were generated using Global Climate Models at RCP4.5 and RCP8.5 and corrected for their biases. The Cascaded ANFIS algorithm was selected to handle this regression problem by comparing the best algorithm among the state-of-the-art regression models, such as RNN, LSTM, and GRU. The Cascaded ANFIS could forecast the power generation with a minimum error of 1.01, whereas the second-best algorithm, GRU, scored a 6.5 error rate. The predictions were carried out for the near-future and mid-future and compared against the previous work. The results clearly show the algorithm can predict power generation's variation with rainfall with a slight error rate. This research can be utilized in numerous areas for hydropower development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...