Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 239(4): 1212-1224, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421208

RESUMO

Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.


Assuntos
Ecossistema , Raízes de Plantas , Filogenia , Ecologia , Plantas , Exsudatos e Transudatos , Solo/química
2.
Sci Rep ; 12(1): 15553, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114408

RESUMO

The high-altitude alpine regions are characterized by highly variable and harsh environmental conditions. However, relatively little is known about the diverse mechanisms adopted by alpine plants to adapt to these stressful conditions. Here, we studied variation in transcriptome and physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an evergreen shrub of Himalaya. The samples were collected at 12 different time-points, from August until snowfall in November 2017, and then from June to September 2018. It was observed that with a drop in both ambient air temperature and photoperiod towards onset of winter, the freezing resistance of plants increased, resulting in 'cold acclimation'. Further, 'de-acclimation' was associated with a decrease in freezing resistance and increase in photosynthetic efficiency of leaves during spring. A considerable amount of variation was observed in the transcriptome in a time-dependent sequential manner, with a total of 9,881 differentially expressed genes. Based on gene expression profiles, the time-points could be segregated into four clusters directly correlating with the distinct phases of acclimation: non-acclimation (22-August-2017, 14-August-2018, 31-August-2018), early cold acclimation (12-September-2017, 29-September-2017), late cold acclimation (11-October-2017, 23-October-2017, 04-November-2017, 18-September-2018) and de-acclimation (15-June-2018, 28-June-2018, 14-July-2018). Cold acclimation was a gradual process, as indicated by presence of an intermediate stage (early acclimation). However, the plants can by-pass this stage when sudden decrease in temperature is encountered. The maximum variation in expression levels of genes occurred during the transition to de-acclimation, hence was 'transcriptionally' the most active phase. The similar or higher expression levels of genes during de-acclimation in comparison to non-acclimation suggested that molecular functionality is re-initiated after passing through the harsh winter conditions.


Assuntos
Altitude , Temperatura Baixa , Aclimatação/genética , Perfilação da Expressão Gênica , RNA-Seq
4.
Physiol Plant ; 173(4): 1824-1840, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34379811

RESUMO

Recording environmentally induced variations in the metabolome in plants can be a promising approach for understanding the complex patterns of metabolic regulation and their eco-physiological consequences. Here, we studied metabolome-wide changes and eco-physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an alpine evergreen shrub of the Himalaya. New leaves of R. anthopogon appear after the snow-melt and remain intact even when the plants get covered under snow (November-June). During this whole period, they may undergo several physiological and biochemical adjustments in response to fluctuating temperatures and light conditions. To understand these changes, we analyzed eco-physiological traits, that is, freezing resistance, dry matter content and % of nitrogen and the overall metabolome across 10 different time-points, from August until the snowfall in November 2017, and then from June to August 2018. As anticipated, the freezing resistance increased toward the onset of winters. The leaf tissues exhibited a complete reshuffling of the metabolome during the growth cycle and time-points segregated into four clusters directly correlating with distinct phases of acclimation: non-acclimation (August 22, 2017; August 14, 2018), early cold acclimation (September 12, September 29, October 11, 2017), late cold acclimation (October 23, November 4, 2017), and de-acclimation (June 15, June 28, July 14, 2018). Cold acclimation involved metabolic progression (101 metabolites) with an increase of up to 19.4-fold (gentiobiose), whereas de-acclimation showed regression (120 metabolites) with a decrease of up to 30-fold (sucrose). The changes in the metabolome during de-acclimation were maximum and were not just a reversal of cold acclimation. Our results provided insights into the direction and magnitude of physiological changes in Rhododendron anthopogon that occurred across the year.


Assuntos
Temperatura Baixa , Metaboloma , Aclimatação , Congelamento , Metabolômica
6.
Plant Physiol Biochem ; 132: 708-719, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30150110

RESUMO

Higher elevations and, early as well as late phase of growing season are expected to be more stressful for plants in high altitudes. The present study was carried out on Rhododendron anthopogon D. Don, an evergreen shrub of Himalaya to understand variation in eco-physiological and biogeochemical traits due to combined effect of elevation gradient and growing season. We conducted our study at Rohtang, India (32°22'04″ N 77°15'17″ E) and undertook random sampling of leaves at four elevations (3200 m, 3600 m, 4000 m and 4250 m), and three time periods (late June, early August and late September) during growing season. We assessed 12 eco-physiological and biogeochemical variables and analysed results through ANOVA and multivariate analysis. It was found that leaf relative water content, nitrogen percentage (N%), carbon/nitrogen ratio (C/N ratio), total chlorophyll, malondialdehyde equivalents and proline content varied along two gradients (factors) with their interaction being statistically significant. Variance partitioning analysis of studied traits revealed that both factors contribute significantly, with 'season' component ranging between 55.75 % and 94.03 % for most of the parameters, whereas, 'elevation' component contributed more for leaf area, N% and C/N ratio (48.08 %-75.03 %). Our results suggest that eco-physiology of R. anthopogon is significantly influenced by interaction of seasonal variations coupled with elevation gradient. The study highlights the importance of examining both seasonal and elevational gradients in understanding plant adaptation strategies. Overall, our findings revealed that plasticity in eco-physiological and biogeochemical traits underline the wide distribution of R. anthopogon in the high altitudes.


Assuntos
Altitude , Ecossistema , Rhododendron/química , Rhododendron/fisiologia , Estações do Ano , Análise de Variância , Geografia , Índia , Malondialdeído/metabolismo , Folhas de Planta/fisiologia , Análise de Componente Principal , Característica Quantitativa Herdável , Solo/química
7.
Curr Genomics ; 17(3): 261-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27252592

RESUMO

Post-human genome revelation observes the emergence of 'Nutigenomics' as one of the exciting scientific advancement influencing mankind around the world. Food or more precisely 'nutrition' has the major impact in defining the cause-response interaction between nutrient (diet) and human health. In addition to substantial understanding of nutrition-human-health interaction, bases of 'nutrigenomic' development foster on advent in transcriptomics, genomics, proteomics and metabolomics as well as insight into food as health supplement. Interaction of selected nutrient with associated genes in specific organ or tissue necessary to comprehend that how individual's genetic makeup (DNA transcribed into mRNA and then to proteins) respond to particular nutrient. It provided new opportunities to incorporate natural bioactive compounds into food for specific group of people with similar genotype. As inception of diabetes associated with change in gene expression of, not limited to, protein kinase B, insulin receptor, duodenal homeobox and glucokinase, thus, targeting such proteins by modifying or improving the nutritional availability or uptake may help to devise novel food, supplements, or nutraceuticals. In this article, various aspects of R&D in nutrigenomics are reviewed to ascertain its impact on human health, especially with life-style associated diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...