Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(11): e0075322, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214692

RESUMO

We report the genomic features of Bradyrhizobium sp. strain SRS-191, which was isolated from a former nuclear legacy site in Aiken, South Carolina, USA. With a genome size of 7,621,400 bp, the strain harbored genes not only for environmentally beneficial traits (e.g., heavy metal resistance, nitrogen fixation, and aromatic biodegradation) but also for antimicrobial resistance.

2.
Front Microbiol ; 11: 1923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973703

RESUMO

The carriage of both, heavy metal and antibiotic resistance appears to be a common trait in bacterial communities native to long-term contaminated habitats, including the Savannah River Site (SRS). There is widespread soil contamination at the SRS; a United States Department of Energy (DOE) facility with long-term contamination from past industrial and nuclear weapons production activities. To further evaluate the genomic and metabolic traits that underpin metal and antibiotic resistance, a robust mercury (Hg) and uranium (U)-resistant strain- SRS-8-S-2018, was isolated. Minimum inhibitory concentration of this strain revealed resistance to Hg (10 µg/ml) and U (5 mM), the two main heavy metal contaminants at the SRS. Metabolic assessment of strain SRS-8-S-2018 using Biolog metabolic fingerprinting analysis revealed preference for carbohydrate utilization followed by polymers, amino acids, carboxy acids, and esters; this physiological activity diminished when Hg stress was provided at 1 and 3 µg/ml and completely ceased at 5 µg/ml Hg, indicating that continued release of Hg will have negative metabolic impacts to even those microorganisms that possess high resistance ability. Development of antibiotic resistance in strain SRS-8-S-2018 was evaluated at a functional level using phenomics, which confirmed broad resistance against 70.8% of the 48 antibiotics tested. Evolutionary and adaptive traits of strain SRS-8-S-2018 were further assessed using genomics, which revealed the strain to taxonomically affiliate with Serratia marcescens species, possessing a genome size of 5,323,630 bp, 5,261 proteins (CDS), 55 genes for transfer RNA (tRNA), and an average G + C content of 59.48. Comparative genomics with closest taxonomic relatives revealed 360 distinct genes in SRS-8-S-2018, with multiple functions related to both, antibiotic and heavy metal resistance, which likely facilitates the strain's survival in a metalliferous soil habitat. Comparisons drawn between the environmentally isolated Serratia SRS-8-S-2018 with 31 other strains revealed a closer functional association with medically relevant isolates suggesting that propensity of environmental Serratia isolates in acquiring virulence traits, as a function of long-term exposure to heavy metals, which is facilitating development, recruitment and proliferation of not only metal resistant genes (MRGs) but antibiotic resistant genes (ARGs), which can potentially trigger future bacterial pathogen outbreaks emanating from contaminated environmental habitats.

3.
Front Microbiol ; 11: 1024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655505

RESUMO

The majority of environmental microbiomes are not amenable to cultivation under standard laboratory growth conditions and hence remain uncharacterized. For environmental applications, such as bioremediation, it is necessary to isolate microbes performing the desired function, which may not necessarily be the fast growing or the copiotroph microbiota. Toward this end, cultivation and isolation of microbial strains using diffusion chambers (DC) and/or microbial traps (MT) have both been recently demonstrated to be effective strategies because microbial enrichment is facilitated by soil nutrients and not by synthetically defined media, thus simulating their native habitat. In this study, DC/MT chambers were established using soils collected from two US Department of Energy (DOE) sites with long-term history of heavy metal contamination, including mercury (Hg). To characterize the contamination levels and nutrient status, soils were first analyzed for total mercury (THg), methylmercury (MeHg), total carbon (TC), total nitrogen (TN), and total phosphorus (TP). Multivariate statistical analysis on these measurements facilitated binning of soils under high, medium and low levels of contamination. Bacterial and fungal microbiomes that developed within the DC and MT chambers were evaluated using comparative metagenomics, revealing Chthoniobacter, Burkholderia and Bradyrhizobium spp., as the predominant bacteria while Penicillium, Thielavia, and Trichoderma predominated among fungi. Many of these core microbiomes were also retrieved as axenic isolates. Furthermore, canonical correspondence analysis (CCA) of biogeochemical measurements, metal concentrations and bacterial communities revealed a positive correlation of Chthoniobacter/Bradyrhizobium spp., to THg whereas Burkholderia spp., correlated with MeHg. Penicillium spp., correlated with THg whereas Trichoderma spp., and Aspergillus spp., correlated with MeHg, from the MT approach. This is the first metagenomics-based assessment, isolation and characterization of soil-borne bacterial and fungal communities colonizing the diffusion chambers (DC) and microbial traps (MT) established with long-term metal contaminated soils. Overall, this study provides proof-of-concept for the successful application of DC/MT based assessment of mercury resistant (HgR) microbiomes in legacy metal-contaminated soils, having complex contamination issues. Overall, this study brings out the significance of microbial communities and their relevance in context to heavy metal cycling for better stewardship and restoration of such historically contaminated systems.

4.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703833

RESUMO

Metagenomic assessment provides a comprehensive survey of soil microbiota; however, isolation and characterization of functionally relevant microbiota are required prior to their application(s), such as for metal remediation. Toward this end, we report the availability of a culture collection comprising uranium (U)-resistant microbial assemblages (CURMA) to the scientific community.

5.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273355

RESUMO

A mercury (Hg)-resistant Serratia sp. strain, SRS-8-S-2018, was isolated, followed by generation of its draft genome sequence, which indicated a genomic size of 5,323,630 bp composed of 5,261 coding sequences. A suite of genomic functions in strain SRS-8-S-2018 was identified, and these likely facilitate survival in a metalliferous soil habitat.

6.
Methods Protoc ; 3(1)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138252

RESUMO

The assessment of minimum inhibitory concentration (MIC) is a conventional technique used for the screening of microbial resistance against antibiotics, biocides, and contaminants such as heavy metals. However, as part of our ongoing work, we have observed biases associated with using traditional liquid MIC method to screen microbial heavy metal resistance, including both bacterial and fungal strains. Specifically, the addition of uranium into synthetic media causes immediate precipitation prior to the initiation of microbial growth, thus hampering the optical density measurements, and the obtained MIC values are thus flawed and inaccurate. To address this discrepancy, we report the optimization and development of a serial-dilution-based MIC method conducted on solid growth media supplemented with uranium, which is more accurate, relative to the testing of MICs performed in liquid cultures. Notably, we report on the efficacy of this method to screen not only bacteria that are resistant to uranium but also demonstrate the successful application to yeast and fungal isolates, for their ability to resist uranium, is more accurate and sensitive relative to the liquid method. We believe that this newly developed method to screen heavy metal resistance, such as uranium, is far superior to the existing liquid MIC method and propose replacing the liquid assay with the solid plate MIC reported herein.

7.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023812

RESUMO

A soilborne Stenotrophomonas sp. strain (MA5) that is resistant to mercury was isolated. A draft genome sequence-based analysis revealed a suite of gene determinants to resist mercury and other heavy metals, multidrug efflux, stress response, and membrane transport, and these provide cues to a suite of mechanisms that underpin cellular survival in contaminated soil.

8.
Cells ; 8(4)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987227

RESUMO

A largely understudied microbially mediated mercury (Hg) bioremediative pathway includes the volatilization of Hg2+ to Hg°. Therefore, studies on Hg resistant bacteria (HgR), isolated from historically long-term contaminated environments, can serve as models to understand mechanisms underpinning Hg cycling. Towards this end, a mercury resistant bacterial strain, identified as Stenotrophomonas sp., strain MA5, was isolated from Mill Branch on the Savannah River Site (SRS); an Hg-impacted ecosystem. Minimum inhibitory concentration (MIC) analysis showed Hg resistance of up to 20 µg/mL by MA5 with 95% of cells retaining viability. Microcosm studies showed that the strain depleted more than 90% of spiked Hg2+ within the first 24 h of growth and the detection of volatilized mercury indicated that the strain was able to reduce Hg2+ to Hg°. To understand molecular mechanisms of Hg volatilization, a draft whole genome sequence was obtained, annotated and analyzed, which revealed the presence of a transposon-derived mer operon (merRTPADE) in MA5, known to transport and reduce Hg2+ into Hg°. Based on the whole genome sequence of strain MA5, qRT-PCR assays were designed on merRTPADE, we found a ~40-fold higher transcription of merT, P, A, D and E when cells were exposed to 5 µg/mL Hg2+. Interestingly, strain MA5 increased cellular size as a function of increasing Hg concentrations, which is likely an evolutionary response mechanism to cope with Hg stress. Moreover, metal contaminated environments are shown to co-select for antibiotic resistance. When MA5 was screened for antibiotic resistance, broad resistance against penicillin, streptomycin, tetracycline, ampicillin, rifampicin, and erythromycin was found; this correlated with the presence of multiple gene determinants for antibiotic resistance within the whole genome sequence of MA5. Overall, this study provides an in-depth understanding of the underpinnings of Stenotrophomonas-mercury interactions that facilitate cellular survival in a contaminated soil habitat.


Assuntos
Mercúrio/toxicidade , Rios/microbiologia , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Genes Bacterianos , Mercúrio/isolamento & purificação , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Stenotrophomonas/genética , Stenotrophomonas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Volatilização
9.
Cells ; 7(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545132

RESUMO

Two Burkholderia spp. (strains SRS-25 and SRS-46) were isolated from high concentrations of uranium (U) from the U.S. Department of Energy (DOE)-managed Savannah River Site (SRS). SRS contains soil gradients that remain co-contaminated by heavy metals from previous nuclear weapons production activities. Uranium (U) is one of the dominant contaminants within the SRS impacted soils, which can be microbially transformed into less toxic forms. We established microcosms containing strains SRS-25 and SRS-46 spiked with U and evaluated the microbially-mediated depletion with concomitant genomic and proteomic analysis. Both strains showed a rapid depletion of U; draft genome sequences revealed SRS-25 genome to be of approximately 8,152,324 bp, a G + C content of 66.5, containing a total 7604 coding sequences with 77 total RNA genes. Similarly, strain SRS-46 contained a genome size of 8,587,429 bp with a G + C content of 67.1, 7895 coding sequences, with 73 total RNA genes, respectively. An in-depth, genome-wide comparisons between strains 25, 46 and a previously isolated strain from our research (Burkholderia sp. strain SRS-W-2-2016), revealed a common pool of 3128 genes; many were found to be homologues to previously characterized metal resistance genes (e.g., for cadmium, cobalt, and zinc), as well as for transporter, stress/detoxification, cytochromes, and drug resistance functions. Furthermore, proteomic analysis of strains with or without U stress, revealed the increased expression of 34 proteins from strain SRS-25 and 52 proteins from strain SRS-46; similar to the genomic analyses, many of these proteins have previously been shown to function in stress response, DNA repair, protein biosynthesis and metabolism. Overall, this comparative proteogenomics study confirms the repertoire of metabolic and stress response functions likely rendering the ecological competitiveness to the isolated strains for colonization and survival in the heavy metals contaminated SRS soil habitat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...