Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Med Chem Lett ; 15(2): 205-214, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352833

RESUMO

Evidence supports boosting nicotinamide adenine dinucleotide (NAD+) to counteract oxidative stress in aging and neurodegenerative disease. One approach is to enhance the activity of nicotinamide phosphoribosyltransferase (NAMPT). Novel NAMPT positive allosteric modulators (N-PAMs) were identified. A cocrystal structure confirmed N-PAM binding to the NAMPT rear channel. Early hit-to-lead efforts led to a 1.88-fold maximum increase in the level of NAD+ in human THP-1 cells. Select N-PAMs were assessed for mitigation of reactive oxygen species (ROS) in HT-22 neuronal cells subject to inflammatory stress using tumor necrosis factor alpha (TNFα). N-PAMs that increased NAD+ more effectively in THP-1 cells attenuated TNFα-induced ROS more effectively in HT-22 cells. The most efficacious N-PAM completely attenuated ROS elevation in glutamate-stressed HT-22 cells, a model of neuronal excitotoxicity. This work demonstrates for the first time that N-PAMs are capable of mitigating elevated ROS in neurons stressed with TNFα and glutamate and provides support for further N-PAM optimization for treatment of neurodegenerative diseases.

2.
J Med Chem ; 67(4): 2712-2731, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38295759

RESUMO

The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers, regulating transcription via two highly homologous tandem bromodomains, BD1 and BD2. Clinical development of nonselective pan-BD BET inhibitors has been challenging, partly due to dose-limiting side effects such as thrombocytopenia. This has prompted the push for domain-selective BET inhibitors to achieve a more favorable therapeutic window. We report a structure-guided drug design campaign that led to the development of a potent BD1-selective BET inhibitor, 33 (XL-126), with a Kd of 8.9 nM and 185-fold BD1/BD2 selectivity. The high selectivity was first assayed by SPR, validated by a secondary time-resolved fluorescence energy transfer assay, and further corroborated by BROMOscan (∼57-373 fold selectivity). The cocrystal of 33 with BRD4 BD1 and BD2 demonstrates the source of selectivity: repulsion with His437 and lost binding with the leucine clamp. Notably, the BD1 selectivity of BET inhibitor 33 leads to both the preservation of platelets and potent anti-inflammatory efficacy.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Anti-Inflamatórios/farmacologia , Piridonas/farmacologia , Proteínas de Ciclo Celular/metabolismo
3.
J Med Chem ; 66(24): 16704-16727, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096366

RESUMO

Depletion of nicotinamide adenine dinucleotide (NAD+) is associated with aging and disease, spurring the study of dietary supplements to replenish NAD+. The catabolism of NAD+ to nicotinamide (NAM) requires the salvage of NAM to replenish cellular NAD+, which relies on the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Pharmacological activation of NAMPT provides an alternative to dietary supplements. Screening for activators of NAMPT identified small molecule NAMPT positive allosteric modulators (N-PAMs). N-PAMs bind to the rear channel of NAMPT increasing enzyme activity and alleviating feedback inhibition by NAM and NAD+. Synthesis of over 70 N-PAMs provided an excellent correlation between rear channel binding affinity and potency for enzyme activation, confirming the mechanism of allosteric activation via binding to the rear channel. The mechanism accounts for higher binding affinity leading to loss of efficacy. Enzyme activation translated directly to elevation of NAD+ measured in cells. Optimization led to an orally bioavailable N-PAM.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , NAD/metabolismo , Niacinamida/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Relação Estrutura-Atividade
4.
Biochemistry ; 62(4): 923-933, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36746631

RESUMO

In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , Citocinas/metabolismo , Longevidade , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Sítio Alostérico
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064087

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with extensive dysregulation of the epigenome and epigenetic regulators, such as bromodomain and extraterminal motif (BET) proteins, have been suggested as potential targets for therapy. However, single-agent BET inhibition has shown poor efficacy in clinical trials, and no epigenetic approaches are currently used in PDAC. To circumvent the limitations of the current generation of BET inhibitors, we developed the compound XP-524 as an inhibitor of the BET protein BRD4 and the histone acetyltransferase EP300/CBP, both of which are ubiquitously expressed in PDAC tissues and cooperate to enhance tumorigenesis. XP-524 showed increased potency and superior tumoricidal activity than the benchmark BET inhibitor JQ-1 in vitro, with comparable efficacy to higher-dose JQ-1 combined with the EP300/CBP inhibitor SGC-CBP30. We determined that this is in part due to the epigenetic silencing of KRAS in vitro, with similar results observed using ex vivo slice cultures of human PDAC tumors. Accordingly, XP-524 prevented KRAS-induced, neoplastic transformation in vivo and extended survival in two transgenic mouse models of aggressive PDAC. In addition to the inhibition of KRAS/MAPK signaling, XP-524 also enhanced the presentation of self-peptide and tumor recruitment of cytotoxic T lymphocytes, though these lymphocytes remained refractory from full activation. We, therefore, combined XP-524 with an anti-PD-1 antibody in vivo, which reactivated the cytotoxic immune program and extended survival well beyond XP-524 in monotherapy. Pending a comprehensive safety evaluation, these results suggest that XP-524 may benefit PDAC patients and warrant further exploration, particularly in combination with immune checkpoint inhibition.


Assuntos
Antineoplásicos/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Proteína p300 Associada a E1A/química , Regulação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Death Dis ; 13(1): 45, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013112

RESUMO

PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína de Suscetibilidade a Apoptose Celular/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Phyllanthus/química , Prognóstico
7.
J Med Chem ; 65(4): 2940-2955, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34665619

RESUMO

Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel "BL2 groove" and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Antivirais/síntese química , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , COVID-19/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Pandemias , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
8.
ACS Pharmacol Transl Sci ; 4(1): 143-154, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33615168

RESUMO

Selective liver X receptor (LXR) agonists have been extensively pursued as therapeutics for Alzheimer's disease and related dementia (ADRD) and, for comorbidities such as type 2 diabetes (T2D) and cerebrovascular disease (CVD), disorders with underlying impaired insulin signaling, glucose metabolism, and cholesterol mobilization. The failure of the LXR-focused approach led us to pursue a novel strategy to discover nonlipogenic ATP-binding cassette transporter A1 (ABCA1) inducers (NLAIs): screening for ABCA1-luciferase activation in astrocytoma cells and counterscreening against lipogenic gene upregulation in hepatocarcinoma cells. Beneficial effects of LXRß agonists mediated by ABCA1 include the following: control of cholesterol and phospholipid efflux to lipid-poor apolipoproteins forming beneficial peripheral HDL and HDL-like particles in the brain and attenuation of inflammation. While rare, ABCA1 variants reduce plasma HDL and correlate with an increased risk of ADRD and CVD. In secondary assays, NLAI hits enhanced cholesterol mobilization and positively impacted in vitro biomarkers associated with insulin signaling, inflammatory response, and biogenic properties. In vivo target engagement was demonstrated after oral administration of NLAIs in (i) mice fed a high-fat diet, a model for obesity-linked T2D, (ii) mice administered LPS, and (iii) mice with accelerated oxidative stress. The lack of adverse effects on lipogenesis and positive effects on multiple biomarkers associated with T2D and ADRD supports this novel phenotypic approach to NLAIs as a platform for T2D and ADRD drug discovery.

9.
bioRxiv ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33594371

RESUMO

Antiviral agents blocking SARS-CoV-2 viral replication are desperately needed to complement vaccination to end the COVID-19 pandemic. Viral replication and assembly are entirely dependent on two viral cysteine proteases: 3C-like protease (3CLpro) and the papain-like protease (PLpro). PLpro also has deubiquitinase (DUB) activity, removing ubiquitin (Ub) and Ub-like modifications from host proteins, disrupting the host immune response. 3CLpro is inhibited by many known cysteine protease inhibitors, whereas PLpro is a relatively unusual cysteine protease, being resistant to blockade by such inhibitors. A high-throughput screen of biased and unbiased libraries gave a low hit rate, identifying only CPI-169 and the positive control, GRL0617, as inhibitors with good potency (IC50 < 10 lower case Greek µM). Analogues of both inhibitors were designed to develop structure-activity relationships; however, without a co-crystal structure of the CPI-169 series, we focused on GRL0617 as a starting point for structure-based drug design, obtaining several co-crystal structures to guide optimization. A series of novel 2-phenylthiophene-based non-covalent SARS-CoV-2 PLpro inhibitors were obtained, culminating in low nanomolar potency. The high potency and slow inhibitor off-rate were rationalized by newly identified ligand interactions with a 'BL2 groove' that is distal from the active site cysteine. Trapping of the conformationally flexible BL2 loop by these inhibitors blocks binding of viral and host protein substrates; however, until now it has not been demonstrated that this mechanism can induce potent and efficacious antiviral activity. In this study, we report that novel PLpro inhibitors have excellent antiviral efficacy and potency against infectious SARS-CoV-2 replication in cell cultures. Together, our data provide structural insights into the design of potent PLpro inhibitors and the first validation that non-covalent inhibitors of SARS-CoV-2 PLpro can block infection of human cells with low micromolar potency.

10.
J Med Chem ; 63(13): 7186-7210, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453591

RESUMO

Acquired resistance to fulvestrant and palbociclib is a new challenge to treatment of estrogen receptor positive (ER+) breast cancer. ER is expressed in most resistance settings; thus, bromodomain and extra-terminal protein inhibitors (BETi) that target BET-amplified ER-mediated transcription have therapeutic potential. Novel pyrrolopyridone BETi leveraged novel interactions with L92/L94 confirmed by a cocrystal structure of 27 with BRD4. Optimization of BETi using growth inhibition in fulvestrant-resistant (MCF-7:CFR) cells was confirmed in endocrine-resistant, palbociclib-resistant, and ESR1 mutant cell lines. 27 was more potent in MCF-7:CFR cells than six BET inhibitors in clinical trials. Transcriptomic analysis differentiated 27 from the benchmark BETi, JQ-1, showing downregulation of oncogenes and upregulation of tumor suppressors and apoptosis. The therapeutic approach was validated by oral administration of 27 in orthotopic xenografts of endocrine-resistant breast cancer in monotherapy and in combination with fulvestrant. Importantly, at an equivalent dose in rats, thrombocytopenia was mitigated.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fulvestranto/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Piridonas/química , Piridonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Neoplasias da Mama/metabolismo , Humanos , Células MCF-7 , Camundongos , Modelos Moleculares , Domínios Proteicos , Piridonas/farmacocinética , Receptores de Estrogênio/metabolismo , Distribuição Tecidual , Fatores de Transcrição/química , Ensaios Antitumorais Modelo de Xenoenxerto
11.
ACS Med Chem Lett ; 11(4): 521-527, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292559

RESUMO

The oxidative stress response, gated by the protein-protein interaction of KEAP1 and NRF2, has garnered significant interest in the past decade. Misregulation in this pathway has been implicated in disease states such as multiple sclerosis, rheumatoid arthritis, and diabetic chronic wounds. Many of the known activators of NRF2 are electrophilic in nature and may operate through several biological pathways rather than solely through the activation of the oxidative stress response. Recently, our lab has reported a nonelectrophilic, monoacidic, naphthalene-based NRF2 activator which exhibited good potency in vitro. Herein, we report a detailed structure-activity relationship of naphthalene-based NRF2 activators, an X-ray crystal structure of our monoacidic KEAP1 inhibitor, and identification of an underexplored area of the NRF2 binding pocket of KEAP1.

12.
J Med Chem ; 63(12): 6547-6560, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31682434

RESUMO

Pharmacological activation of NRF2 (nuclear factor erythroid 2-related factor 2) arises from blocking the interaction of NRF2 with its negative regulator, KEAP1 (Kelch-like ECH-associated protein 1). We previously reported an isoquinoline-based NRF2 activator, but this compound showed negative logD7.4 and a -2 charge at physiological pH, which may have limited its membrane permeability. In this work, we report potent, metabolically stable analogs that result from replacing a carboxymethyl group at the 4-position with a fluoroalkyl group.


Assuntos
Descoberta de Drogas , Isoquinolinas/química , Isoquinolinas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Estabilidade de Medicamentos , Humanos , Ligação Proteica
13.
PLoS One ; 14(6): e0210305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242188

RESUMO

Ectonucleoside Triphosphate Diphosphohydrolase 5 (ENTPD5) has been shown to be important in maintaining cellular function in cancer, and its expression is upregulated through multiple, unique pathways in certain cancers, including laryngeal, glioblastoma multiforme, breast, testicular, and prostate. ENTPD5 supports cancer growth by promoting the import of UDP-glucose, a metabolite used for protein glycosylation and hence proper glycoprotein folding, into the ER by providing the counter molecule, UMP, to the ER antiporter. Despite its cancer-supporting function, no small molecule inhibitors of ENTPD5 are commercially available, and few studies have been performed in tissue culture to understand the effects of chemical inhibition of ENTPD5. We performed a high-throughput screen (HTS) of 21,120 compounds to identify small molecule inhibitors of ENPTD5 activity. Two hits were identified, and we performed a structure activity relationship (SAR) screen around these hits. Further validation of these probes were done in an orthogonal assay and then assayed in cell culture to assess their effect on prostate cancer cell lines. Notably, treatment with the novel ENTPD5 inhibitor reduced the amount of glycoprotein produced in treated cells, consistent with the hypothesis that ENTPD5 is important for glycoprotein folding. This work serves as an important step in designing new molecular probes for ENTPD5 as well as further probing the utility of targeting ENTPD5 to combat cancer cell proliferation.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala/métodos , Proteínas Oncogênicas/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Pirofosfatases/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicoproteínas/efeitos dos fármacos , Humanos , Masculino , Sondas Moleculares , Células PC-3 , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade
14.
Methods Enzymol ; 610: 265-309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390802

RESUMO

High-throughput screening assays have become nearly ubiquitous in the search for small compounds or peptides that can modulate biological processes for therapeutic purposes. While many assays have become quite robust, with well-established protocols, the subsequent steps of validating the hits and choosing the best ones to take forward into leads for further chemical development are less established. In this chapter, we describe a variety of approaches, including chemical assessment, the use of various computational approaches, a variety of counter-screens, and "orthogonal" biophysical assays using nuclear magnetic resonance, surface plasmon resonance, isothermal titration calorimetry or thermal shift assays as methods for validating and assessing the quality of hits.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Calorimetria/métodos , Desenho Assistido por Computador , Humanos , Espectroscopia de Ressonância Magnética/métodos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície/métodos
16.
J Biol Chem ; 293(3): 931-940, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203527

RESUMO

Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Feromônios/metabolismo , Percepção de Quorum/fisiologia , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Positivas/metabolismo , Neprilisina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
17.
ACS Med Chem Lett ; 8(12): 1241-1245, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29259741

RESUMO

Hydrogen sulfide is produced from l-cysteine by the action of both cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS) and increasingly has been found to play a profound regulatory role in a range of physiological processes. Mounting evidence suggests that upregulation of hydrogen sulfide biosynthesis occurs in several disease states, including rheumatoid arthritis, hypertension, ischemic injury, and sleep-disordered breathing. In addition to being critical tools in our understanding of hydrogen sulfide biology, inhibitors of CSE hold therapeutic potential for the treatment of diseases in which increased levels of this gasotransmitter play a role. We describe the discovery and development of a novel series of potent CSE inhibitors that show increased activity over the benchmark inhibitor and, importantly, display high selectivity for CSE versus CBS.

18.
Chemistry ; 23(4): 752-756, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27734530

RESUMO

Herein, we report the design, synthesis, and characterization of a lanthanideIII complex-based probe for the time-gated luminescence detection of hydrogen sulfide (H2 S) in aqueous media. The probe's unique sensing mechanism relies on the selective reduction of azide to amine by sulfide, followed by intramolecular cyclization to form a quinolinone. The quinolinone is a sensitizer that absorbs near-UV light and transfers excitation energy to coordinated TbIII or EuIII ions to trigger a strong "turn-on" luminescence response with ms-scale lifetimes characteristic of lanthanide complexes. Using this probe, we developed a robust, high throughput screening (HTS) assay for detecting H2 S generated by cystathionine γ-lyase (CSE), one of the main producers of H2 S in mammalian cells. In a 240-compound screen to identify potential CSE inhibitors, the EuIII analogue of the sensor showed a low false-positive rate and high Z'-factor (>0.7).


Assuntos
Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/análise , Medições Luminescentes , Cistationina gama-Liase/antagonistas & inibidores , Európio/química , Ensaios de Triagem em Larga Escala , Sulfeto de Hidrogênio/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/química , Espectroscopia de Ressonância Magnética
19.
Microb Cell ; 3(2): 53-64, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28357335

RESUMO

The formation of small Aß42 oligomers has been implicated as a toxic species in Alzheimer disease (AD). In strong support of this hypothesis we found that overexpression of Yap1802, the yeast ortholog of the human AD risk factor, phosphatidylinositol binding clathrin assembly protein (PICALM), reduced oligomerization of Aß42 fused to a reporter in yeast. Thus we used the Aß42-reporter system to identify drugs that could be developed into therapies that prevent or arrest AD. From a screen of 1,200 FDA approved drugs and drug-like small compounds we identified 7 drugs that reduce Aß42 oligomerization in yeast: 3 antipsychotics (bromperidol, haloperidol and azaperone), 2 anesthetics (pramoxine HCl and dyclonine HCl), tamoxifen citrate, and minocycline HCl. Also, all 7 drugs caused Aß42 to be less toxic to PC12 cells and to relieve toxicity of another yeast AD model in which Aß42 aggregates targeted to the secretory pathway are toxic. Our results identify drugs that inhibit Aß42 oligomers from forming in yeast. It remains to be determined if these drugs inhibit Aß42 oligomerization in mammals and could be developed as a therapeutic treatment for AD.

20.
mBio ; 6(3): e00393-15, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25968646

RESUMO

UNLABELLED: Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. IMPORTANCE: The global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species of Streptococcus. Treatment of cultures of S. pyogenes with the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclosporina/farmacologia , Ciclosporinas/farmacologia , Peptídeos/metabolismo , Percepção de Quorum/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Polarização de Fluorescência , Humanos , Peptídeos/genética , Feromônios/metabolismo , Percepção de Quorum/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...