Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Microbiol ; 22(5): 291-308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38110694

RESUMO

Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.


Assuntos
Microbiota , Medicina de Precisão , Humanos , Fungos , Bactérias/genética
2.
Biology (Basel) ; 12(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36671834

RESUMO

The gut microbiota features a unique diurnal rhythmicity which contributes to modulation of host physiology and homeostasis. The composition and activity of the microbiota and its secreted molecules influence the intestinal milieu and neighboring organs, such as the liver. Multiple immune-related molecules have been linked to the diurnal microbiota-host interaction, including Reg3γ, IgA, and MHCII, which are secreted or expressed on the gut surface and directly interact with intestinal bacteria. These molecules are also strongly influenced by dietary patterns, such as high-fat diet and time-restricted feeding, which are already known to modulate microbial rhythms and peripheral clocks. Herein, we use Reg3γ, IgA, and MHCII as test cases to highlight the divergent effects mediated by the diurnal activity of the gut microbiota and their downstream host effects. We further highlight current challenges and conflicts, remaining questions, and perspectives toward a holistic understanding of the microbiome's impacts on circadian human behavior.

3.
Clin Sci (Lond) ; 136(18): 1371-1387, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36156126

RESUMO

Smoking is associated with an increased risk of cancer, pulmonary and cardiovascular diseases, but the precise mechanisms by which such risk is mediated remain poorly understood. Additionally, smoking can impact the oral, nasal, oropharyngeal, lung and gut microbiome composition, function, and secreted molecule repertoire. Microbiome changes induced by smoking can bear direct consequences on smoking-related illnesses. Moreover, smoking-associated dysbiosis may modulate weight gain development following smoking cessation. Here, we review the implications of cigarette smoking on microbiome community structure and function. In addition, we highlight the potential impacts of microbial dysbiosis on smoking-related diseases. We discuss challenges in studying host-microbiome interactions in the context of smoking, such as the correlations with smoking-related disease severity versus causation and mechanism. In all, understanding the microbiome's role in the pathophysiology of smoking-related diseases may promote the development of rational therapies for smoking- and smoking cessation-related disorders, as well as assist in smoking abstinence.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Doenças Cardiovasculares/complicações , Disbiose/complicações , Humanos , Fumar/efeitos adversos
4.
J Diabetes ; 14(6): 377-393, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35698246

RESUMO

In recent years, intermittent fasting (IF), including periodic fasting and time-restricted feeding (TRF), has been increasingly suggested to constitute a promising treatment for cardiometabolic diseases (CMD). A deliberate daily pause in food consumption influences the gut microbiome and the host circadian clock, resulting in improved cardiometabolic health. Understanding the molecular mechanisms by which circadian host-microbiome interactions affect host metabolism and immunity may add a potentially important dimension to effective implementation of IF diets. In this review, we discuss emerging evidence potentially linking compositional and functional alterations of the gut microbiome with IF impacts on mammalian metabolism and risk of development of hypertension, type 2 diabetes (T2D), obesity, and their long-term micro- and macrovascular complications. We highlight the challenges and unknowns in causally linking diurnal bacterial signals with dietary cues and downstream metabolic consequences and means of harnessing these signals toward future microbiome integration into precision medicine.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Ritmo Circadiano , Dieta , Humanos , Mamíferos
5.
Microorganisms ; 10(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336242

RESUMO

The term 'old age' generally refers to a period characterized by profound changes in human physiological functions and susceptibility to disease that accompanies the final years of a person's life. Despite the conventional definition of old age as exceeding the age of 65 years old, quantifying aging as a function of life years does not necessarily reflect how the human body ages. In contrast, characterizing biological (or physiological) aging based on functional parameters may better reflect a person's temporal physiological status and associated disease susceptibility state. As such, differentiating 'chronological aging' from 'biological aging' holds the key to identifying individuals featuring accelerated aging processes despite having a young chronological age and stratifying them to tailored surveillance, diagnosis, prevention, and treatment. Emerging evidence suggests that the gut microbiome changes along with physiological aging and may play a pivotal role in a variety of age-related diseases, in a manner that does not necessarily correlate with chronological age. Harnessing of individualized gut microbiome data and integration of host and microbiome parameters using artificial intelligence and machine learning pipelines may enable us to more accurately define aging clocks. Such holobiont-based estimates of a person's physiological age may facilitate prediction of age-related physiological status and risk of development of age-associated diseases.

6.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888430

RESUMO

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Assuntos
Doença de Crohn/microbiologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Transcriptoma/genética , Animais , Antibacterianos/farmacologia , Relógios Circadianos/fisiologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Dieta , Células Epiteliais/citologia , Células Epiteliais/imunologia , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Homeostase , Hibridização in Situ Fluorescente , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Intestino Delgado/fisiologia , Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodicidade , Linfócitos T/imunologia , Transcriptoma/fisiologia
7.
Trends Immunol ; 41(6): 512-530, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32359722

RESUMO

Host circadian rhythmicity and the timing of feeding are increasingly recognized to cross-regulate and entrain each other, and may play crucial roles in regulating multiple physiological functions including host immunity and metabolic health. Of relevance, these circadian diet-immune interactions may be modulated by the gut microbiota. We review current knowledge linking the circadian clock and dietary timing to host immune-microbiota interactions, exemplifying how this axis may impact on host immunity in health and in a variety of immune-mediated diseases. We also discuss current challenges in reaching mechanistic insights regarding the functions of the diurnally shifting diet-microbiome-host immune axis. We highlight the possible implications of circadian reprogramming by dietary timing patterns as a future intervention to modulate a variety of immune-related diseases.


Assuntos
Ritmo Circadiano , Dieta , Microbioma Gastrointestinal , Microbiota , Animais , Ritmo Circadiano/imunologia , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...