Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 87(6): 1591-1600, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38862138

RESUMO

Mangrove derived actinomycetes are a rich reservoir of bioactive natural products and play important roles in pharmaceutical chemistry. In a screen of actinomycetes from mangrove rhizosphere sedimental environments, the isolated strain Streptomyces sp. SCSIO 40068 displayed strong antibacterial activity. Further fractionation of the extract yielded four new compounds kebanmycins A-D (1-4) and two known analogues FD-594 (5) and the aglycon (6). The structures of 1-6 were determined based on extensive spectroscopic data and single-crystal X-ray diffraction analysis. 1-3 featured a fused pyranonaphthaxanthene as an integral part of a 6/6/6/6/6/6 polycyclic motif, and showed bioactivity against a series of Gram-positive bacteria and cytotoxicity to several human tumor cells. In addition, the kebanmycins biosynthetic gene cluster (keb) was identified in Streptomyces sp. SCSIO 40068, and KebMT2 was biochemically characterized as a tailoring sugar-O-methyltransferase, leading to a proposed biosynthetic route to 1-6. This study paves the way to further investigate 1 as a potential lead compound.


Assuntos
Antibacterianos , Streptomyces , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Família Multigênica , Rhizophoraceae/microbiologia , Streptomyces/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia
2.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 27-32, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814238

RESUMO

In this study, BC3F2 convergent population [(K343*3/RML22 × K343*3/DHMAS) × K343] was constructed by marker-assisted backcross breeding using K343 as the recurrent parent. DHMAS and RML22 were used as donor parents for the rice blast resistance genes Pi54 and Pi9, respectively. The population was first characterized using GGT 2.0 software, which showed 96.7% of the recurrent genome recovery covering 13953.6 cM, while DHMAS and RML22 showed 1.6% (235.5 cM) and 1.2% (177.1 cM) introgression respectively. The chromosomal segment substitution lines (CSSLs) were then identified using CSSL Finder software. A total of 36 CSSLs were identified, including 22 for DHMAS/K343 and 14 for RML22/K343. Introgression rates for donor substituted segments in DHMAS/K343 CSSLs ranged from 0.54% to 5.99%, with donor coverage of 44.5%, while in RML22/K343 CSSLs, introgression rates ranged from 0.54% to 4.75%, with donor coverage of 24.5%. The identified CSSLs would be a valuable genetic pool and could be used as genomic resources for the discovery and mapping of important genes and QTLs in rice genetic improvement.


Assuntos
Cromossomos de Plantas , Oryza , Oryza/genética , Cromossomos de Plantas/genética , Melhoramento Vegetal/métodos , Patrimônio Genético , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Cruzamentos Genéticos , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico/métodos , Genes de Plantas
4.
J Nat Prod ; 86(4): 979-985, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921263

RESUMO

A chemical investigation of Streptomyces sp. SCSIO 40069 resulted in the isolation of a series of aromatic polyketides with rare skeletons, including five new compounds RM18c-RM18g (1-5) and three known ones (6-8). Their structures and absolute configurations were determined by diverse methods, including HRMS and NMR spectra, chemical reaction, Snatzke's method, quantum mechanical-nuclear magnetic resonance (QM-NMR), and X-ray crystallographic analysis. Compounds 1, 2, 4b, and 8 displayed moderate or weak antibacterial activities.


Assuntos
Policetídeos , Streptomyces , Estrutura Molecular , Streptomyces/química , Policetídeos/química , Antibacterianos/química , Espectroscopia de Ressonância Magnética
5.
Mar Drugs ; 21(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36662205

RESUMO

Two new chlorinated metabolites, 8-chlorine-5-hydroxy-2,3-dimethyl-7-methoxychromone (1) and 3,4-dichloro-1H-pyrrole-2,5-dione (3), and eight known compounds (2 and 4-9) were isolated from the mangrove sediments-derived fungus Mollisia sp. SCSIO41409. Their structures were elucidated by physicochemical properties and extensive spectroscopic analysis. The absolute configuration of stemphone C (4) was established for the first time by the X-ray crystallographic analysis. Compounds 3 and 4 showed different intensity of antimicrobial activities against several pathogenic fungi and bacteria, and antiproliferative activities against two human prostate cancer cell lines (IC50 values 2.77 to 9.60 µM). Further, stemphone C (4) showed a reducing PC-3 cell colony formation, inducing apoptosis and blocking the cell cycle at S-phase in a dose-dependent manner; thus, it could be considered as a potential antiproliferative agent and a promising anti-prostate cancer lead compound.


Assuntos
Ascomicetos , Humanos , Ascomicetos/química , Análise Espectral , Cristalografia por Raios X , Linhagem Celular , Estrutura Molecular
6.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199536

RESUMO

Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.


Assuntos
Amaranthus/crescimento & desenvolvimento , Metais Pesados/análise , Poluentes do Solo/análise , Amaranthus/metabolismo , Biodegradação Ambiental , Biomassa , Ácido Edético/química , Egito , Substâncias Húmicas/análise
7.
Front Plant Sci ; 12: 767150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975951

RESUMO

Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.

8.
Ecol Evol ; 8(23): 12056-12065, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598799

RESUMO

Genetic diversity and population genetic structure of the wild rice species Oryza rufipogon and O. nivara in Sri Lanka were studied using 33 microsatellite markers. A total of 315 individuals of 11 natural populations collected from the wet, intermediate, and dry zones of the country were used in the study. We found a moderate to high level of genetic diversity at the population level, with the polymorphic loci (P) ranging from 60.6% to 100% (average 81.8%) and the expected heterozygosity (H E) varying from 0.294 to 0.481 (average 0.369). A significant genetic differentiation between species and strong genetic structure within species were also observed. Based on species distribution modeling, we detected the dynamics of the preferred habitats for the two species in Sri Lanka and demonstrated that both O. rufipogon and O. nivara populations have expanded substantially since the last internal glacial. In addition, we showed that the geographical distribution of the two species corresponded to the climate zones and identified a few of key environmental variables that contribute to the distribution of the two species, implying the potential mechanism for ecological adaptation of these two species in Sri Lanka. These studies provided important insights into the population genetics and evolution of these wild species in Sri Lanka and are of great significance to the in situ conservation and utilization of these wild resources in genetic improvement of rice.

9.
Proc Natl Acad Sci U S A ; 115(1): 127-132, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255049

RESUMO

Biodiversity is key for human and environmental health. Available dietary and ecological indicators are not designed to assess the intricate relationship between food biodiversity and diet quality. We applied biodiversity indicators to dietary intake data from and assessed associations with diet quality of women and young children. Data from 24-hour diet recalls (55% in the wet season) of n = 6,226 participants (34% women) in rural areas from seven low- and middle-income countries were analyzed. Mean adequacies of vitamin A, vitamin C, folate, calcium, iron, and zinc and diet diversity score (DDS) were used to assess diet quality. Associations of biodiversity indicators with nutrient adequacy were quantified using multilevel models, receiver operating characteristic curves, and test sensitivity and specificity. A total of 234 different species were consumed, of which <30% were consumed in more than one country. Nine species were consumed in all countries and provided, on average, 61% of total energy intake and a significant contribution of micronutrients in the wet season. Compared with Simpson's index of diversity and functional diversity, species richness (SR) showed stronger associations and better diagnostic properties with micronutrient adequacy. For every additional species consumed, dietary nutrient adequacy increased by 0.03 (P < 0.001). Diets with higher nutrient adequacy were mostly obtained when both SR and DDS were maximal. Adding SR to the minimum cutoff for minimum diet diversity improved the ability to detect diets with higher micronutrient adequacy in women but not in children. Dietary SR is recommended as the most appropriate measure of food biodiversity in diets.


Assuntos
Ingestão de Alimentos , Preferências Alimentares , Micronutrientes , Valor Nutritivo , População Rural , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
10.
Plant Cell ; 27(5): 1445-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25966761

RESUMO

Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cálcio/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Peróxido de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Catalase/genética , Catalase/metabolismo , Quinase 8 Dependente de Ciclina/genética , Secas , Regulação da Expressão Gênica de Plantas , Homeostase , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estresse Fisiológico
11.
PLoS One ; 9(12): e112778, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25436611

RESUMO

Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.


Assuntos
Fluxo Gênico , Variação Genética , Oryza/genética , Plantas Daninhas/genética , Sementes/genética , Controle de Plantas Daninhas , Geografia , Repetições de Microssatélites/genética , Oryza/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento
12.
Plant Physiol ; 154(3): 1232-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805328

RESUMO

Plant calcium-dependent protein kinases (CDPKs) may function as calcium sensors and play important roles in the regulation of plant growth and development and in plant responses to biotic and abiotic stresses. The Arabidopsis (Arabidopsis thaliana) genome encodes 34 CDPKs, and most of them have not been functionally characterized. Here, we report the functional characterization of CPK10 in Arabidopsis response to drought stress. The cpk10 mutant, a T-DNA insertion mutant for the Arabidopsis CPK10 gene, showed a much more sensitive phenotype to drought stress compared with wild-type plants, while the CPK10 overexpression lines displayed enhanced tolerance to drought stress. Induction of stomatal closure and inhibition of stomatal opening by abscisic acid (ABA) and Ca(2+) were impaired in the cpk10 mutants. Using yeast two-hybrid methods, a heat shock protein, HSP1, was identified as a CPK10-interacting protein. The interaction between CPK10 and HSP1 was further confirmed by pull-down and bimolecular fluorescence complementation assays. The HSP1 knockout mutant (hsp1) plants showed a similar sensitive phenotype under drought stress as the cpk10 mutant plants and were similarly less sensitive to ABA and Ca(2+) in regulation of stomatal movements. Electrophysiological experiments showed that ABA and Ca(2+) inhibition of the inward K(+) currents in stomatal guard cells were impaired in the cpk10 and hsp1 mutants. All presented data demonstrate that CPK10, possibly by interacting with HSP1, plays important roles in ABA- and Ca(2+)-mediated regulation of stomatal movements.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sinalização do Cálcio , Secas , Estômatos de Plantas/fisiologia , Proteínas Quinases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Proteínas de Choque Térmico/metabolismo , Mutagênese Insercional , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Quinases/genética , RNA de Plantas/genética , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...