Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Field Crops Res ; 308: 109278, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495465

RESUMO

Context: Agronomic data such as applied inputs, management practices, and crop yields are needed for assessing productivity, nutrient balances, resource use efficiency, as well as other aspects of environmental and economic performance of cropping systems. In many instances, however, these data are only available at a coarse level of aggregation or simply do not exist. Objectives: Here we developed an approach that identifies sites for agronomic data collection for a given crop and country, seeking a balance between minimizing data collection efforts and proper representation of the main crop producing areas. Methods: The developed approach followed a stratified sampling method based on a spatial framework that delineates major climate zones and crop area distribution maps, which guides selection of sampling areas (SA) until half of the national harvested area is covered. We provided proof of concept about the robustness of the approach using three rich databases including data on fertilizer application rates for maize, wheat, and soybean in Argentina, soybean in the USA, and maize in Kenya, which were collected via local experts (Argentina) and field surveys (USA and Kenya). For validation purposes, fertilizer rates per crop and nutrient derived at (sub-) national level following our approach were compared against those derived using all data collected from the whole country. Results: Application of the approach in Argentina, USA, and Kenya resulted in selection of 12, 28, and 10 SAs, respectively. For each SA, three experts or 20 fields were sufficient to give a robust estimate of average fertilizer rates applied by farmers. Average rates at national level derived from our approach compared well with those derived using the whole database ( ± 10 kg N, ± 2 kg P, ± 1 kg S, and ± 5 kg K per ha) requiring less than one third of the observations. Conclusions: The developed minimum crop data collection approach can fill the agronomic data gaps in a cost-effective way for major crop systems both in large- and small-scale systems. Significance: The proposed approach is generic enough to be applied to any crop-country combination to guide collection of key agricultural data at national and subnational levels with modest investment especially for countries that do not currently collect data.

2.
Ambio ; 51(5): 1158-1167, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34845625

RESUMO

Urbanization has appropriated millions of hectares of cropland, and this trend will persist as cities continue to expand. We estimate the impact of this conversion as the amount of land needed elsewhere to give the same yield potential as determined by differences in climate and soil properties. Robust spatial upscaling techniques, well-validated crop simulation models, and soil, climate, and cropping system databases are employed with a focus on populous countries with high rates of land conversion. We find that converted cropland is 30-40% more productive than new cropland, which means that projection of food production potential must account for expected cropland loss to urbanization. Policies that protect existing farmland from urbanization would help relieve pressure on expansion of agriculture into natural ecosystems.


Assuntos
Conservação dos Recursos Naturais , Urbanização , Agricultura , Produtos Agrícolas , Ecossistema
3.
Nat Food ; 3(3): 217-226, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-37117641

RESUMO

Southeast Asia is a major rice-producing region with a high level of internal consumption and accounting for 40% of global rice exports. Limited land resources, climate change and yield stagnation during recent years have once again raised concerns about the capacity of the region to remain as a large net exporter. Here we use a modelling approach to map rice yield gaps and assess production potential and net exports by 2040. We find that the average yield gap represents 48% of the yield potential estimate for the region, but there are substantial differences among countries. Exploitable yield gaps are relatively large in Cambodia, Myanmar, Philippines and Thailand but comparably smaller in Indonesia and Vietnam. Continuation of current yield trends will not allow Indonesia and Philippines to meet their domestic rice demand. In contrast, closing the exploitable yield gap by half would drastically reduce the need for rice imports with an aggregated annual rice surplus of 54 million tons available for export. Our study provides insights for increasing regional production on existing cropland by narrowing existing yield gaps.

4.
Sci Rep ; 11(1): 18769, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548572

RESUMO

Foliar fungicide usage in soybeans in the north-central United States increased steadily over the past two decades. An agronomically-interpretable machine learning framework was used to understand the importance of foliar fungicides relative to other factors associated with realized soybean yields, as reported by growers surveyed from 2014 to 2016. A database of 2738 spatially referenced fields (of which 30% had been sprayed with foliar fungicides) was fit to a random forest model explaining soybean yield. Latitude (a proxy for unmeasured agronomic factors) and sowing date were the two most important factors associated with yield. Foliar fungicides ranked 7th out of 20 factors in terms of relative importance. Pairwise interactions between latitude, sowing date and foliar fungicide use indicated more yield benefit to using foliar fungicides in late-planted fields and in lower latitudes. There was a greater yield response to foliar fungicides in higher-yield environments, but less than a 100 kg/ha yield penalty for not using foliar fungicides in such environments. Except in a few production environments, yield gains due to foliar fungicides sufficiently offset the associated costs of the intervention when soybean prices are near-to-above average but do not negate the importance of disease scouting and fungicide resistance management.

5.
Nat Food ; 2(10): 773-779, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37117974

RESUMO

Food security interventions and policies need reliable estimates of crop production and the scope to enhance production on existing cropland. Here we assess the performance of two widely used 'top-down' gridded frameworks (Global Agro-ecological Zones and Agricultural Model Intercomparison and Improvement Project) versus an alternative 'bottom-up' approach (Global Yield Gap Atlas). The Global Yield Gap Atlas estimates extra production potential locally for a number of sites representing major breadbaskets and then upscales the results to larger spatial scales. We find that estimates from top-down frameworks are alarmingly unlikely, with estimated potential production being lower than current farm production at some locations. The consequences of using these coarse estimates to predict food security are illustrated by an example for sub-Saharan Africa, where using different approaches would lead to different prognoses about future cereal self-sufficiency. Our study shows that foresight about food security and associated agriculture research priority setting based on yield potential and yield gaps derived from top-down approaches are subject to a high degree of uncertainty and would benefit from incorporating estimates from bottom-up approaches.

6.
Agric For Meteorol ; 259: 364-373, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30224833

RESUMO

Water productivity (WP) is a robust benchmark for crop production in relation to available water supply across spatial scales. Quantifying water-limited potential (WPw) and actual on-farm (WPa) WP to estimate WP gaps is an essential first step to identify the most sensitive factors influencing production capacity with limited water supply. This study combines local weather, soil, and agronomic data, and crop modeling in a spatial framework to determine WPw and WPa at local and regional levels for rainfed cropping systems in 17 (maize) and 18 (wheat) major grain-producing countries representing a wide range of cropping systems, from intensive, high-yield maize in north America and wheat in west Europe to low-input, low-yield maize systems in sub-Saharan Africa and south Asia. WP was calculated as the quotient of either water-limited yield potential or actual yield, and simulated crop evapotranspiration. Estimated WPw upper limits compared well with maximum WP reported for field-grown crops. However, there was large WPw variation across regions with different climate and soil (CV = 29% for maize and 27% for wheat), which cautions against the use of generic WPw benchmarks and highlights the need for region-specific WPw. Differences in simulated evaporative demand, crop evapotranspiration after flowering, soil evaporation, and intensity of water stress around flowering collectively explained two thirds of the variation in WPw. Average WP gaps were 13 (maize) and 10 (wheat) kg ha-1 mm-1, equivalent to about half of their respective WPw. We found that non-water related factors (i.e., management deficiencies, biotic and abiotic stresses, and their interactions) constrained yield more than water supply in ca. half of the regions. These findings highlight the opportunity to produce more food with same amount of water, provided limiting factors other than water supply can be identified and alleviated with improved management practices. Our study provides a consistent protocol for estimating WP at local to regional scale, which can be used to understand WP gaps and their mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...