Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38928976

RESUMO

A recent study conducted in Khon Kaen Province, Thailand, evaluated the effectiveness of a technology-assisted intervention aimed at improving water quality and addressing related health issues in communities around key water bodies. The intervention targeted health concerns associated with water contamination, including chronic kidney diseases, skin conditions, hypertension, and neurological symptoms. The study included water quality assessments and health evaluations of 586 residents and implemented a Learning Innovation Platform (LIP) across 13 communities. Results showed significant improvements in the community, including a decrease in hypertension and skin-related health issues, as well as enhanced community awareness and proficiency in implementing simple water quality assessments and treatment. The study demonstrated the value of a comprehensive, technology-driven community approach, effectively enhancing water quality and health outcomes, and promoting greater community awareness and self-sufficiency in managing environmental health risks.


Assuntos
Qualidade da Água , Tailândia , Humanos , Feminino , Masculino , Adulto , Poluição da Água , Pessoa de Meia-Idade , Dermatopatias/terapia
2.
ACS Omega ; 9(9): 10099-10109, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463332

RESUMO

Here, we introduce an environmentally friendly approach to fabricate a simple and cost-effective plasmonic paper for detecting food additives using surface-enhanced Raman spectroscopy (SERS). The plasmonic paper is fabricated by in situ growth of gold nanoparticles (AuNPs) on filter paper (FP). To facilitate this green fabrication process, we applied a double-layered coating of biopolymers, chitosan (CS) and alginate (ALG), onto the FP using a layer-by-layer (LbL) assembly through electrostatic interactions. Compared to single-layer biopolymer coatings, double-layered biopolymer-coated paper, ALG/CS/FP, significantly improves the reduction properties. Consequently, effective in situ growth of AuNPs can be achieved as seen in high density of AuNP formation on the substrate. The resulting plasmonic paper provides high SERS performance with an enhancement factor (EF) of 5.7 × 1010 and a low limit of detection (LOD) as low as 1.37 × 10-12 M 4-mercaptobenzoic acid (4-MBA). Furthermore, it exhibits spot-to-spot reproducibility with a relative standard deviation (RSD) of 8.2% for SERS analysis and long-term stability over 50 days. This paper-based SERS substrate is applied for melamine (MEL) detection with a low detection limit of 0.2 ppb, which is sufficient for monitoring MEL contamination in milk based on food regulations. Additionally, we demonstrate a simultaneous detection of ß-agonists, including ractopamine (RAC) and salbutamol (SAL), exhibiting the multiplexing capability and versatility of the plasmonic paper in food contaminant analysis. The development of this simple plasmonic paper through the LbL biopolymer assembly not only paves the way for novel SERS substrate fabrication but also broadens the application of SERS technology in food contaminant monitoring.

3.
Anal Methods ; 14(18): 1765-1773, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35470360

RESUMO

Herein, we describe a simple and cost-effective fabrication of a paper-based SERS substrate by coating poly(diallyldimethylammonium chloride) (PDADMAC) and gold nanostars (AuNSs) on the filter paper using a vacuum filtration system. The paper-based SERS substrates were fabricated and ready to be used within an hour without any complicated equipment or processes. The cationic polymer, PDADAMAC, was pretreated on the filter paper to improve the absorbability of negatively charged AuNSs through electrostatic interaction. The PDADMAC/AuNS paper significantly intensified the SERS signal of 4-mercaptobenzoic acid (4-MBA) compared to that of pure AuNS-coated paper due to the high density of AuNSs absorbed on the SERS substrate. The PDADMAC/AuNS paper substrate provided a SERS enhancement factor (EF) of 1.08 × 107 with a low detection limit of 1 nM 4-MBA. The substrate shows excellent spot-to-spot reproducibility with a relative standard deviation (RSD) of 5.03%, and substrate-to-substrate reproducibility with an RSD of 3.20% for the Raman shift at 1080 cm-1. The paper substrate was then applied for the rapid detection of pesticides with a low detection limit of 0.51 µM (0.13 ppm) for paraquat, and 0.38 µM (0.09 ppm) for thiram, using a handheld Raman spectrometer. The development of this simple and cost-effective paper-based SERS substrate, and its applications for on-site monitoring of pesticides, could be beneficial for food security and environmental safety.


Assuntos
Nanopartículas Metálicas , Praguicidas , Praguicidas/análise , Reprodutibilidade dos Testes , Análise Espectral Raman , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...