Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(26): e2206357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942916

RESUMO

Engineering catalytically active sites have been a challenge so far and often relies on optimization of synthesis routes, which can at most provide quantitative enhancement of active facets, however, cannot provide control over choosing orientation, geometry and spatial distribution of the active sites. Artificially sculpting catalytically active sites via laser-etching technique can provide a new prospect in this field and offer a new species of nanocatalyst for achieving superior selectivity and attaining maximum yield via absolute control over defining their location and geometry of every active site at a nanoscale precision. In this work, a controlled protocol of artificial surface engineering is shown by focused laser irradiation on pristine MoS2 flakes, which are confirmed as catalytic sites by electrodeposition of AuNPs. The preferential Au deposited catalytic sites are found to be electrochemically active for nitrogen adsorption and its subsequent reduction due to the S-vacancies rather than Mo-vacancy, as advocated by DFT analysis. The catalytic performance of Au-NR/MoS2 shows a high yield rate of ammonia (11.43 × 10-8  mol s-1 cm-2 ) at a potential as low as -0.1 V versus RHE and a notable Faradaic efficiency of 13.79% during the electrochemical nitrogen reduction in 0.1 m HCl.

2.
Nanotechnology ; 34(9)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36541504

RESUMO

2D van der Waals heterostructure paves a path towards next generation semiconductor junctions for nanoelectronics devices in the post silicon era. Probing the band alignment at a real condition of such 2D contacts and experimental determination of its junction parameters is necessary to comprehend the charge diffusion and transport through such 2D nano-junctions. Here, we demonstrate the formation of the p-n junction at the MoS2/Black phosphorene (BP) interface and conduct a nanoscale investigation to experimentally measure the band alignment at real conditions by means of measuring the spatial distribution of built-in potential, built-in electric field, and depletion width using the Kelvin probe force microscopy (KPFM) technique. We show that optimization of lift scan height is critical for defining the depletion region of MoS2/BP with nanoscale precision using the KPFM technique. The variations in the built-in potential and built-in electric field with varying thicknesses of MoS2are revealed and calibrated.

3.
J Phys Chem Lett ; 13(51): 12019-12025, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36541806

RESUMO

Solar spectrum and sensitivity of human eyes peak at green wavelength range of visible light, and the materials that can respond to a larger part of the visible spectrum are highly sought after. Two-dimensional graphene-like zinc oxide (gZnO) is a wide band gap semiconductor, but photogeneration of electron-hole pairs in it at visible wavelengths has not been achieved so far. Here, the sub-band gap excitation in 2D zinc oxide layers covered with gold nanoparticles is reported. The sub-band gap excitation and corresponding emission are correlated with oxygen interstitials introduced by AuNP deposition in the gZnO lattice. Attachment of AuNPs on gZnO also leads to increased electron availability at oxygen sites of the gZnO lattice, which translates into greater electron availability for sub-band gap excitation. The plasmonically enhanced trap level to conduction band transition constitutes sub-band gap excitation and manifests itself in local surface potential measurements carried out using a Kelvin probe force microscope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...